題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:,設(shè),
若(2)中的滿足對(duì)任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點(diǎn)在軸上,點(diǎn)在軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點(diǎn)在軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過、作軌跡的切線、,當(dāng),求直線的方程.(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。
1-15CBDAC CDB 0 5 100 [3.9] 垂直 2或8
16.⑴ ∵ ,……………………………… 2分
又∵ ,∴ 而為斜三角形,
∵,∴. ……………………………………………………………… 4分
∵,∴ . …………………………………………………… 6分
⑵∵,∴ …10分
即,∵,∴.…………………………………12分
17.(Ⅰ)從4名運(yùn)動(dòng)員中任取兩名,其靶位號(hào)與參賽號(hào)相同,有種方法,另2名運(yùn)動(dòng)員靶位號(hào)與參賽號(hào)均不相同的方法有1種,所以恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與參賽號(hào)相同的概率為 ……………………………4分
(Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524………………………8分
②
所以2號(hào)射箭運(yùn)動(dòng)員的射箭水平高…………………………………12分
18.證明:(Ⅰ)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交線為AC,∴平面ACFE…………………6分
(Ⅱ)取EF中點(diǎn)G,EB中點(diǎn)H,連結(jié)DG、GH、DH,∵DE=DF,∴ ∵平面ACFE,∴ 又∵,∴又∵,∴
∴是二面角B―EF―D的平面角.
在△BDE中∴
∴,∴又∴在△DGH中,
由余弦定理得即二面角B―EF―D的大小余弦值...14分
19.解:(1)由橢圓定義可得,可得
而,,解得 (4分)
(或解:以為直徑的圓必與橢圓有交點(diǎn),即
(2)由,得
解得
此時(shí)
當(dāng)且僅當(dāng)m=2時(shí), (9分)
(3)由
設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,中點(diǎn)Q的坐標(biāo)為
則,兩式相減得
①
且在橢圓內(nèi)的部分
又由可知
②
①②兩式聯(lián)立可求得點(diǎn)Q的坐標(biāo)為
點(diǎn)Q必在橢圓內(nèi)
又 (14分)
20.解:(1)
故……………………………4分
(2)
故
由此猜測
下面證明:當(dāng)時(shí),由
得
若
當(dāng)
當(dāng)時(shí),
當(dāng)時(shí),
總之故在(- (10分)
又
所以當(dāng)時(shí),在(-1,0)上有唯一實(shí)數(shù)解,從而在
上有唯一實(shí)數(shù)解。
綜上可知,. (14分)
21.解:(1)令
令
由①②得 (6分)
(2)由(1)可得
則
又
n
又
………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com