19.設(shè)橢圓的兩個焦點是.且橢圓上存在點.使 . 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)

橢圓上任一點到兩個焦點的距離的和為6,焦距為,分別是橢圓的左右頂點.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若均不重合,設(shè)直線的斜率分別為,證明:為定值;

(Ⅲ)設(shè)為橢圓上一動點,關(guān)于軸的對稱點,四邊形的面積為,設(shè),求函數(shù)的最大值. 

查看答案和解析>>

(本題滿分14分)

橢圓上任一點到兩個焦點的距離的和為6,焦距為,分別是橢圓的左右頂點.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若均不重合,設(shè)直線的斜率分別為,證明:為定值;

(Ⅲ)設(shè)為橢圓上一動點,關(guān)于軸的對稱點,四邊形的面積為,設(shè),求函數(shù)的最大值. 

查看答案和解析>>

(本題滿分14分)

橢圓G:的兩個焦點為F1、F2,短軸兩端點B1、B2,已知

F1、F2、B1、B2四點共圓,且點N(0,3)到橢圓上的點最遠(yuǎn)距離為

  (1)求此時橢圓G的方程;

  (2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點E、F,Q為EF的中點,問E、F兩點能否關(guān)于過點P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)橢圓)的兩個焦點是),且橢圓與圓有公共點.

(1)求的取值范圍;

(2)若橢圓上的點到焦點的最短距離為,求橢圓的方程;

(3)對(2)中的橢圓,直線)與交于不同的兩點、,若線段的垂直平分線恒過點,求實數(shù)的取值范圍.

 

查看答案和解析>>

(本小題滿分14分)設(shè)橢圓與拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上至少取兩個點,將其坐標(biāo)記錄于下表中:

 

1)求,的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率

2)設(shè)直線與橢圓交于不同的兩點,且(其中坐標(biāo)原點),請問是否存在這樣的直線過拋物線的焦點若存在,求出直線的方程;若不存在,請說明理由.

 

查看答案和解析>>

 

1-15CBDAC CDB   0   5   100  [3.9]   垂直  2或8  

16.⑴ ∵ ,……………………………… 2分

又∵ ,∴ 為斜三角形,

,∴.   ……………………………………………………………… 4分

,∴ .  …………………………………………………… 6分

⑵∵,∴ …10分

,∵,∴.…………………………………12分

 

17.(Ⅰ)從4名運動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運動員所抽靶位號與參賽號相同的概率為  ……………………………4

   (Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524………………………8分

   

所以2號射箭運動員的射箭水平高…………………………………12分

 

18.證明:(Ⅰ)在梯形ABCD中,∵,

∴四邊形ABCD是等腰梯形,

,∴

又∵平面平面ABCD,交線為AC,∴平面ACFE…………………6分

(Ⅱ)取EF中點G,EB中點H,連結(jié)DG、GH、DH,∵DE=DF,∴平面ACFE,∴  又∵,∴又∵,∴

是二面角B―EF―D的平面角.

在△BDE中

∴在△DGH中,

由余弦定理得即二面角B―EF―D的大小余弦值...14分

 

 

19.解:(1)由橢圓定義可得,可得

  

,,解得   (4分)

(或解:以為直徑的圓必與橢圓有交點,即

   (2)由,得

解得    

    此時

當(dāng)且僅當(dāng)m=2時, (9分)

(3)由

設(shè)A,B兩點的坐標(biāo)分別為,中點Q的坐標(biāo)為

,兩式相減得

     ①

且在橢圓內(nèi)的部分

又由可知

    ②

①②兩式聯(lián)立可求得點Q的坐標(biāo)為

點Q必在橢圓內(nèi)

 又             (14分)

 

20.解:(1)

……………………………4分

(2)

由此猜測

下面證明:當(dāng)時,由

當(dāng)

當(dāng)時,

當(dāng)時,

總之在(-                (10分)

所以當(dāng)時,在(-1,0)上有唯一實數(shù)解,從而

上有唯一實數(shù)解。

綜上可知,.                 (14分)

 

21.解:(1)令

   令

   由①②得           (6分)

  (2)由(1)可得

n     

   

      ………………14

 

 


同步練習(xí)冊答案