查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點P,則點P的坐標為
(2,2)

查看答案和解析>>

 

第Ⅰ卷(選擇題  共60分)

一、選擇題

20080422

第Ⅱ卷(非選擇題  共90分)

二、填空題

13.2    14.3   15.   16.①③④

三、解答題

17.解:(1)由正弦定理得,…………………………………….….3分

   ,,因此。…….6分

(2)的面積,,………..8分

,所以由余弦定理得….10分

!.12分

文本框:  18.方法一:                

(1)證明:連結BD,

∵D分別是AC的中點,PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2,

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2,

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中點E,連結DE、PE,由E為AB的中點知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直線PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:設點E到平面PBC的距離為h.

∵VP―EBC=VE―PBC,

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴點E到平面PBC的距離為……………………12分

方法二:

(1)同方法一:

(2)解:解:取AB的中點E,連結DE、PE,

過點D作AB的平行線交BC于點F,以D為

  • <mark id="mckjm"></mark>
        1. DP為z軸,建立如圖所示的空間直角坐標系.

          則D(0,0,0),P(0,0,),

          E(),B=(

          上平面PAB的一個法向量,

          則由

          這時,……………………6分

          顯然,是平面ABC的一個法向量.

          ∴二面角P―AB―C的大小是……………………8分

          (3)解:

          平面PBC的一個法向量,

          是平面PBC的一個法向量……………………10分

          ∴點E到平面PBC的距離為………………12分

          19.解:

          20.解(1)由已知,拋物線,焦點F的坐標為F(0,1)………………1分

          l與y軸重合時,顯然符合條件,此時……………………3分

          l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當且僅當直線l通過點()設l的斜率為k,則直線l的方程為

          由已知可得………5分

          解得無意義.

          因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

          (2)由已知可設直線l的方程為……………………8分

          則AB所在直線為……………………9分

          代入拋物線方程………………①

          的中點為

          代入直線l的方程得:………………10分

          又∵對于①式有:

          解得m>-1,

          l在y軸上截距的取值范圍為(3,+)……………………12分

          21.解:(1)在………………1分

          兩式相減得:

          整理得:……………………3分

          時,,滿足上式,

          (2)由(1)知

          ………………8分

          ……………………………………………12分

          22.解:(1)…………………………1分

          是R上的增函數(shù),故在R上恒成立,

          在R上恒成立,……………………2分

          …………3分

          故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

          ∴當

          的最小值………………6分

          亦是R上的增函數(shù)。

          故知a的取值范圍是……………………7分

          (2)……………………8分

          ①當a=0時,上單調(diào)遞增;…………10分

          可知

          ②當

          即函數(shù)上單調(diào)遞增;………………12分

          ③當時,有,

          即函數(shù)上單調(diào)遞增!14分

           


          同步練習冊答案