(3)求證:對(duì)大于1的任意正整數(shù) 查看更多

 

題目列表(包括答案和解析)

若正整數(shù),則稱a1×a2×…×an為N的一個(gè)“分解積”.
(Ⅰ)當(dāng)N分別等于6,7,8時(shí),寫(xiě)出N的一個(gè)分解積,使其值最大;
(Ⅱ)當(dāng)正整數(shù)N(N≥2)的分解積最大時(shí),證明:中2的個(gè)數(shù)不超過(guò)2;
(Ⅲ)對(duì)任意給定的正整數(shù)N(N≥2),求出ak(k=1,2,…,n),使得N的分解積最大.

查看答案和解析>>

對(duì)于正整數(shù)a,b,存在唯一一對(duì)整數(shù)q和r,使得a=bq+r,0≤r<b.特別地,當(dāng)r=0時(shí),稱b能整除a,記作b|a,已知A={1,2,3,…,23}.
(Ⅰ)存在q∈A,使得2011=91q+r(0≤r<91),試求q,r的值;
(Ⅱ)求證:不存在這樣的函數(shù)f:A→{1,2,3},使得對(duì)任意的整數(shù)x1,x2∈A,若|x1-x2|∈{1,2,3},則f(x1)≠f(x2);
(Ⅲ)若B⊆A,card(B)=12(card(B)指集合B 中的元素的個(gè)數(shù)),且存在a,b∈B,b<a,b|a,則稱B為“和諧集”.求最大的m∈A,使含m的集合A的有12個(gè)元素的任意子集為“和諧集”,并說(shuō)明理由.

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

對(duì)于正整數(shù)a,b,存在唯一一對(duì)整數(shù)q和r,使得a=bq+r,0≤r<b。特別地,當(dāng)r=0時(shí),稱b能整除a,記作b|a,已知A={1,2,3,…,23},
(1)存在q∈A,使得2011=91q+r(0≤r<91),試求q,r的值;
(2)求證:不存在這樣的函數(shù)f:A→{1,2,3},使得對(duì)任意的整數(shù)x,y∈A,若|x-y|∈{1,2,3},則f(x)≠f(y);
(3)若BA,card(B)=12(card(B)指集合B中的元素的個(gè)數(shù)),且存在a,b∈B,b<a,b|a,則稱B為“和諧集”。求最大的m∈A,使含m的集合A的有12個(gè)元素的任意子集為“和諧集”,并說(shuō)明理由。

查看答案和解析>>

對(duì)于正整數(shù)a,b,存在唯一一對(duì)整數(shù)q和r,使得,.特別地,當(dāng)時(shí),稱b能整除a,記作,已知
(1)存在,使得,試求,的值;
(2)求證:不存在這樣的函數(shù),使得對(duì)任意的整數(shù),若,則;
(3)若(指集合B中的元素的個(gè)數(shù)),且存在,則稱為“和諧集”,.求最大的,使含m的集合A的有12個(gè)元素的任意子集為“和諧集”,并說(shuō)明理由.

查看答案和解析>>

對(duì)于正整數(shù)a,b,存在唯一一對(duì)整數(shù)q和r,使得a=bq+r,0≤r<b.特別地,當(dāng)r=0時(shí),稱b能整除a,記作b|a,已知A={1,2,3,…,23}.
(Ⅰ)存在q∈A,使得2011=91q+r(0≤r<91),試求q,r的值;
(Ⅱ)求證:不存在這樣的函數(shù)f:A→{1,2,3},使得對(duì)任意的整數(shù)x1,x2∈A,若|x1-x2|∈{1,2,3},則f(x1)≠f(x2);
(Ⅲ)若B⊆A,card(B)=12(card(B)指集合B 中的元素的個(gè)數(shù)),且存在a,b∈B,b<a,b|a,則稱B為“和諧集”.求最大的m∈A,使含m的集合A的有12個(gè)元素的任意子集為“和諧集”,并說(shuō)明理由.

查看答案和解析>>

一.1-5  ACDAD   6-10  DBDAB  11-12  BA

13. 28   14.       15. 1      16.  ⑴⑵⑷

17. 解:(1)∵高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,……………………………………………(2分)

高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。……………(3分)

∴當(dāng)高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。)時(shí),高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

最小正周期為高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。……………………………………………(5分)

(2)∵高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。……………………………………………(8分)

高考資源網(wǎng)(ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。…………(10分)

18.解法一:證明:連結(jié)OC,

.   ----------------------------------------------------------------------------------1分

,,

       ∴ .                ------------------------------------------------------2分

中,     

   ------------------3分

             

.  ----------------------------4分

       (II)過(guò)O作,連結(jié)AE,

       ,

∴AE在平面BCD上的射影為OE.

.  -----------------------------------------7分

中,,,,   

       ∴.∴二面角A-BC-D的大小為.   -------8分

       (III)解:設(shè)點(diǎn)O到平面ACD的距離為

,

 ∴

中, ,

            

,∴

         ∴點(diǎn)O到平面ACD的距離為.-----------------------------------------------------12分

        解法二:(I)同解法一.(II)解:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,

則     

       ,

.  ------------6分

設(shè)平面ABC的法向量

,,

設(shè)夾角為,則

∴二面角A-BC-D的大小為. --------------------8分

       (III)解:設(shè)平面ACD的法向量為,又,

       .   -----------------------------------11分

設(shè)夾角為,

   則     -       設(shè)O 到平面ACD的距離為h,

,∴O到平面ACD的距離為.  ---------------------12分

19.解:(Ⅰ)記“廠家任取4件產(chǎn)品檢驗(yàn),其中至少有1件是合格品”為事件A

   用對(duì)立事件A來(lái)算,有………3分

(Ⅱ)可能的取值為

        ,………

 

 

 

 

………………9分

記“商家任取2件產(chǎn)品檢驗(yàn),都合格”為事件B,則商家拒收這批產(chǎn)品的概率

    所以商家拒收這批產(chǎn)品的概率為………………….12分

20. (1)當(dāng)   (1分)

   

為首項(xiàng),2為公比的等比例數(shù)列。(6分)

   (2)得 (7分)

  

      

。(11分)

        12分

21解(I)設(shè)

      

(Ⅱ)(1)當(dāng)直線的斜率不存在時(shí),方程為

      

       …………(4分)

  (2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為

       設(shè),

      ,得

       …………(6分)

      

      

…………………8分

注意也可用..........12分

22. 解:(1)因?yàn)?nbsp;    所以

依題意可得,對(duì)恒成立,

所以   對(duì)恒成立,

所以   對(duì)恒成立,,即

(2)當(dāng)時(shí),,單調(diào)遞減;

單調(diào)遞增;

處取得極小值,即最小值

所以要使直線與函數(shù)的圖象在上有兩個(gè)不同交點(diǎn),

實(shí)數(shù)的取值范圍應(yīng)為,即(;

(3)當(dāng)時(shí),由可知,上為增函數(shù),

當(dāng)時(shí),令,則,故,

所以。

相加可得

又因?yàn)?sub>

所以對(duì)大于1的任意正整書(shū)

 

 

 

 


同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹