∴ ----------12分 查看更多

 

題目列表(包括答案和解析)

求圓心在直線y=-2x上,并且經(jīng)過點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.

【解析】利用圓心和半徑表示圓的方程,首先

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)  

∴r=,

故所求圓的方程為:=2

解:法一:

設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3,  ………4分

和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圓的方程為:=2                   ………………………12分

法二:由條件設(shè)所求圓的方程為: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圓的方程為:=2             ………………………12分

其它方法相應(yīng)給分

 

查看答案和解析>>

(本小題滿分12分)

甲乙二人用4張撲克牌(分別是紅2, 紅3, 紅4, 方4)玩游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.

(Ⅰ)設(shè)分別表示甲、乙抽到的牌的數(shù)字,寫出甲乙二人抽到的牌的所有情況.

(Ⅱ)若甲抽到紅桃3,則乙抽出的牌的牌面數(shù)字比3大的概率是多少?

(Ⅲ)甲乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝,反之,則乙勝.你認(rèn)為此游戲是否公平,說明你的理由.

 

查看答案和解析>>

.(12分)設(shè)是一個(gè)離散型隨機(jī)變量,其分布列如下表,試求隨機(jī)變量的期望與方差

ξ

-1

0

1

P

1-2q[

q2

   

 

查看答案和解析>>

(本小題滿分12分)一出租車司機(jī)從某飯店到火車站途中有六個(gè)交通崗,假設(shè)他在各交通崗遇到紅燈這一事件是相互獨(dú)立的,并且概率都是.

 

(1)求這位司機(jī)遇到紅燈前,已經(jīng)通過了兩個(gè)交通崗的概率;

(2)求這位司機(jī)遇到紅燈數(shù)的期望與方差.

 

查看答案和解析>>

(本小題滿分12分)
袋中有大小相同的兩個(gè)球,編號(hào)分別為1和2,從袋中每次取出一個(gè)球,若取到球的編號(hào)為偶數(shù),則把該球放回袋中且編號(hào)加1并繼續(xù)取球,若取到球的編號(hào)為奇數(shù),則取球停止,用表示所有被取球的編號(hào)之和。
(1)求的概率分布;
(2)求的數(shù)學(xué)期望和方差。

查看答案和解析>>


同步練習(xí)冊(cè)答案