下面玩擲骰子放球游戲.若擲出1點(diǎn)或6點(diǎn).甲盒放一球,若擲出2點(diǎn).3點(diǎn).4點(diǎn)或5點(diǎn).乙盒放一球.設(shè)擲n次后.甲.乙盒內(nèi)的球數(shù)分別為x.y. 查看更多

 

題目列表(包括答案和解析)

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大。

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

(本題滿分12分)某企業(yè)為了適應(yīng)市場(chǎng)需求,計(jì)劃從2010年元月起,在每月固定投資5萬(wàn)元的基礎(chǔ)上,元月份追加投資6萬(wàn)元,以后每月的追加投資額均為之前幾個(gè)月投資額總和的20%,但每月追加部分最高限額為10萬(wàn)元. 記第n個(gè)月的投資額為

   (1)求n的關(guān)系式;

   (2)預(yù)計(jì)2010年全年共需投資多少萬(wàn)元?(精確到0.01,參考數(shù)據(jù):

       

查看答案和解析>>

(本題滿分12分)

中 ,角的對(duì)邊分別為,且滿足。若。求此三角形的面積;

 

查看答案和解析>>

(本題滿分12分)

已知函數(shù)時(shí)都取得極值

(1)求的值與函數(shù)的單調(diào)區(qū)間   (2)若對(duì),不等式恒成立,求的取值范圍。

 

 

查看答案和解析>>

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

C

B

B

C

D

C

A

C

D

A

二、填空題:

13.           14.         15.     2個(gè)      16.       

三、解答題:

17.解:(1)

               ……………………3分

又         即 

                            …………………5分

(2)    

又  的充分條件        解得     ………12分

18.由題意知,在甲盒中放一球概率為時(shí),在乙盒中放一球的概率為  …2分

①當(dāng)時(shí),,的概率為               ………4分

②當(dāng)時(shí),,又,所以的可能取值為0,2,4

(?)當(dāng)時(shí),有,它的概率為    ………6分

(?)當(dāng) 時(shí),有 , ,

它的概率為

(?)當(dāng)時(shí),有

     它的概率為

的分布列為

  

0

2

4

P

 

 的數(shù)學(xué)期望        …………12分

19.解:(1) 連接 于點(diǎn)E,連接DE, ,

 四邊形 為矩形, 點(diǎn)E為 的中點(diǎn),

       平面                 ……………6分

(2)作于F,連接EF

,D為AB中點(diǎn),,

     EF為BE在平面內(nèi)的射影

為二面角的平面角.

設(shè)     

二面角的余弦值  ………12分

20.(1)據(jù)題意的

                        ………4分

                      ………5分

(2)由(1)得:當(dāng)時(shí),

    

     當(dāng)時(shí),,為增函數(shù)

    當(dāng)時(shí),為減函數(shù)

當(dāng)時(shí),      …………………………8分

當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)時(shí),                   …………………………10分

綜上知:當(dāng)時(shí),總利潤(rùn)最大,最大值為195  ………………12分

21.解:(1)由橢圓定義可得,由可得

,而

解得                                   ……………………4分

(2)由,得,

解得(舍去)     此時(shí)

當(dāng)且僅當(dāng)時(shí),得最小值,

此時(shí)橢圓方程為         ………………………………………8分

(3)由知點(diǎn)Q是AB的中點(diǎn)

設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,中點(diǎn)Q的坐標(biāo)為

,兩式相減得

      AB的中點(diǎn)Q的軌跡為直線

且在橢圓內(nèi)的部分

又由可知,所以直線NQ的斜率為,

方程為

①②兩式聯(lián)立可求得點(diǎn)Q的坐標(biāo)為

點(diǎn)Q必在橢圓內(nèi)          解得

              …………………………………12分

22.解:(1)由,得

,有

 

(2)證明:

為遞減數(shù)列

當(dāng)時(shí),取最大值          

由(1)中知     

綜上可知

(3)

欲證:即證

,構(gòu)造函數(shù)

當(dāng)時(shí),

函數(shù)內(nèi)遞減

內(nèi)的最大值為

當(dāng)時(shí),

       

不等式成立

 

 


同步練習(xí)冊(cè)答案