題目列表(包括答案和解析)
在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 .
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個動點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點(diǎn)A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 .
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個動點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點(diǎn)A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 .
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個動點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點(diǎn)A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 .
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個動點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點(diǎn)A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,
曲線C的參數(shù)方程為 .
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個動點(diǎn),求它到直線l的距離的最值.
(Ⅲ)請問是否存在直線m , m∥l且m與曲線C的交點(diǎn)A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
一、 填空題(48分)
1、4 2、(理)20(文) 3、 4、 5、 6、7、(理)(文)4 8、6 9、 10、 11、如 12、
二、 選擇題(16分)
13、B 14、B 15、C 16、A
三、 解答題(86分)
17、(12分)(1),則……………………… (6分)
(2)………………………………………(9分)
…………………………………………………………(12分)
18、(12分)(1)它是有一條側(cè)棱垂直于底面的四棱錐
…………………………………………………………(6分)
(注:評分注意實線、虛線;垂直關(guān)系;長度比例等)
(2)由題意,,則,
,
∴需要3個這樣的幾何體可以拼成一個棱長為6的正方體…(12分)
19、(14分)
(1)拋物線的焦點(diǎn)為(1,0) ……………………………………………………(2分)
設(shè)橢圓方程為,則
∴橢圓方程為……………………………………………(6分)
(2)設(shè),則
………………(8分)
① 當(dāng)時,,即時,;
② 當(dāng)時,,即時,;
綜上,。……………………………………(14分)
(注:也可設(shè)解答,參照以上解答相應(yīng)評分)
20、(14分)
(1)設(shè)當(dāng)天的旅游收入為L,由得
……………………………(2分)
由,知…………………………………………(4分)
,得。
即當(dāng)天的旅游收入是20萬到60萬。……………………………………………(7分)
(2)則每天的旅游收入上繳稅收后不低于220000元
由 ()得;
由 ()得;
∴………………………………………………………………………(11分)
代入可得 ∴
即每天游客應(yīng)不少于1540人。……………………………………………………(14分)
21、(16分)
(1) 由,得則故(4分)
(2) 由,得即
∴,所以是不唯一的。……………………………………(10分)
(3),,;
∴…………………………………………(12分)
(文)………………………………………………………………………………(16分)
(理)一般地,對任意復(fù)數(shù),有。
證明:設(shè),
,
∴。…………………………………………………(16分)
22、(18分)
(1) ………………………………………………………………(6分)
(2)由解得
即
解得…………………………………(12分)
(3) 由,
又,
當(dāng)時,,,
∴對于時,,命題成立!(14分)
以下用數(shù)學(xué)歸納法證明對,且時,都有成立
假設(shè)時命題成立,即,
那么即時,命題也成立。
∴存在滿足條件的區(qū)間。………………………………(18分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com