(2)若是橢圓上的點(diǎn).設(shè)的坐標(biāo)為(是已知正實(shí)數(shù)).求與之間的最短距離. 20.(14分)在世博會(huì)后.昆明世博園作為一個(gè)旅游景點(diǎn)吸引四方賓客.按規(guī)定旅游收入 查看更多

 

題目列表(包括答案和解析)

設(shè),是橢圓 上的兩點(diǎn),已知向量m,n,若mn且橢圓的離心率,短軸長為2,為坐標(biāo)原點(diǎn)。

(1)求橢圓的方程;

(2)試問:的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由。

 

 

查看答案和解析>>

設(shè)橢圓C:
x2
a2
+
y2
2
=1(a>0)
的左右焦點(diǎn)分別為F1、F2,A是橢圓C上的一點(diǎn),且
AF2
F1F2
=0
,坐標(biāo)原點(diǎn)O到直線AF1的距離為
1
3
|OF1|

(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點(diǎn),過點(diǎn)Q的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)M,若|MQ|=2|QF|,求直線l的斜率.

查看答案和解析>>

設(shè)橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:
 x  3 -2  4  
2
 
3
 y -2
3
 0 -4  
2
2
-
1
2
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C1交于不同兩點(diǎn)M、N,且
OM
ON
=0
,請(qǐng)問是否存在這樣的直線l過拋物線C2的焦點(diǎn)F?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

以橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
的中心O為圓心,
a2+b2
為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓C的左頂點(diǎn)為P,左焦點(diǎn)為F,上頂點(diǎn)為Q,且滿足|PQ|=2,S△OPQ=
6
2
S△OFQ
(Ⅰ)求橢圓ABC及其“準(zhǔn)圓”的方程;
(Ⅱ)若橢圓C的“準(zhǔn)圓”的一條弦ED(不與坐標(biāo)軸垂直)與橢圓C交于M、N兩點(diǎn),試證明:當(dāng)OM•ON=0時(shí),試問弦ED的長是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

設(shè)橢圓C的中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為
2
2
,其一個(gè)頂點(diǎn)的坐標(biāo)是(1,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若斜率為2的直線l過橢圓C在y軸正半軸上的焦點(diǎn),且與該橢圓交于A、B兩點(diǎn),求AB的中點(diǎn)坐標(biāo).

查看答案和解析>>

一、             填空題(48分)

1、4 2、(理)20(文) 3  4、  5、  67、(理)(文)4    8、6  9、 10  11、 12、

二、             選擇題(16分)

13、B    14、B   15C   16、A

三、             解答題(86分)

17、(12分)(1,則……………………… 6分)

(2………………………………………(9分)

…………………………………………………………12分)

18、(12分)(1它是有一條側(cè)棱垂直于底面的四棱錐

 

 

 

 

…………………………………………………………6分)

(注:評(píng)分注意實(shí)線、虛線;垂直關(guān)系;長度比例等)

2)由題意,,則,

,

需要3個(gè)這樣的幾何體可以拼成一個(gè)棱長為6的正方體12分)

19、(14分)

(1)拋物線的焦點(diǎn)為(1,0……………………………………………………2分)

設(shè)橢圓方程為,則

∴橢圓方程為……………………………………………6分)

(2)設(shè),則

  ………………8分)

①     當(dāng)時(shí),,即時(shí),;

②     當(dāng)時(shí),,即時(shí),;

綜上,。……………………………………14分)

(注:也可設(shè)解答,參照以上解答相應(yīng)評(píng)分)

20、(14分)

1)設(shè)當(dāng)天的旅游收入為L,由

……………………………(2分)

,知…………………………………………(4分)

,

即當(dāng)天的旅游收入是20萬到60萬。……………………………………………(7分)

(2)則每天的旅游收入上繳稅收后不低于220000

  )得

  )得;

………………………………………………………………………(11分)

代入可得

即每天游客應(yīng)不少于1540人。……………………………………………………(14分)

21、(16分)

(1)     ,得(4分)

(2)     ,得

,所以是不唯一的。…………………………………10分)

(3,,

…………………………………………12分)

(文)………………………………………………………………………………16分)

(理)一般地,對(duì)任意復(fù)數(shù),有。

證明:設(shè)

,

。…………………………………………………16分)

22、(18分)

1 ………………………………………………………………6分)

(2)由解得

解得…………………………………12分)

(3)    

,

當(dāng)時(shí),,

對(duì)于時(shí),,命題成立。………………14分)

以下用數(shù)學(xué)歸納法證明對(duì),且時(shí),都有成立

假設(shè)時(shí)命題成立,即

那么時(shí),命題也成立。

存在滿足條件的區(qū)間。………………………………18分)

 


同步練習(xí)冊(cè)答案