(2)若中的為常數(shù).則令.對任意.是否一定有常數(shù)使得?這樣的是否唯一?說明理由. 查看更多

 

題目列表(包括答案和解析)

對任意復(fù)數(shù)z=x+yi(x、y∈R),定義g(z)=3x(cosy+isiny).

(1)若g(z)=3,求相應(yīng)的復(fù)數(shù)z.

(2)若z=a+bi(a、b∈R)中的a為常數(shù),則令g(z)=f(b),對任意b,是否一定有常數(shù)m(m≠0)使得f(b+m)=f(b)?這樣的m是否唯一?說明理由.

(3)計算g(2+i),g(-1+i),g(1+i),并設(shè)立它們之間的一個等式.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)),

(Ⅰ)令,討論的單調(diào)性;

(Ⅱ)關(guān)于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;

(Ⅲ)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè),,試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)),
(Ⅰ)令,討論的單調(diào)性;
(Ⅱ)關(guān)于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;
(Ⅲ)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè),,試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)),
(Ⅰ)令,討論的單調(diào)性;
(Ⅱ)關(guān)于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;
(Ⅲ)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè),,試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

給出函數(shù)封閉的定義:若對于定義域D內(nèi)的任意一個自變量x0,都有函數(shù)值f(x0)∈D,稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說明理由;
(2)若定義域D2=(1,5],是否存在實數(shù)a,使得函數(shù)數(shù)學(xué)公式在D2上封閉?若存在,求出a的取值范圍;若不存在,請說明理由.
(3)利用(2)中函數(shù),構(gòu)造一個數(shù)列{xn},方法如下:對于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
①如果可以用上述方法構(gòu)造出一個無窮常數(shù)列{xn},求實數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求實數(shù)a的取值范圍.

查看答案和解析>>

一、             填空題(48分)

1、4 2、(理)20(文) 3、  4、  5  6、7、(理)(文)4    8、6  9、 10、  11 12、

二、             選擇題(16分)

13、B    14、B   15、C   16A

三、             解答題(86分)

17、(12分)(1,則……………………… 6分)

(2………………………………………(9分)

…………………………………………………………12分)

18、(12分)(1它是有一條側(cè)棱垂直于底面的四棱錐

 

 

 

 

…………………………………………………………6分)

(注:評分注意實線、虛線;垂直關(guān)系;長度比例等)

2)由題意,,則

,

需要3個這樣的幾何體可以拼成一個棱長為6的正方體12分)

19、(14分)

(1)拋物線的焦點為(1,0……………………………………………………2分)

設(shè)橢圓方程為,則

∴橢圓方程為……………………………………………6分)

(2)設(shè),則

  ………………8分)

①     時,,即時,;

②     時,,即時,

綜上,。……………………………………14分)

(注:也可設(shè)解答,參照以上解答相應(yīng)評分)

20、(14分)

1)設(shè)當天的旅游收入為L,由

……………………………(2分)

,知…………………………………………(4分)

,。

即當天的旅游收入是20萬到60萬。……………………………………………(7分)

(2)則每天的旅游收入上繳稅收后不低于220000

  )得

  )得;

………………………………………………………………………(11分)

代入可得

即每天游客應(yīng)不少于1540人。……………………………………………………(14分)

21、(16分)

(1)     ,得(4分)

(2)     ,得

,所以是不唯一的。…………………………………10分)

(3,;

…………………………………………12分)

(文)………………………………………………………………………………16分)

(理)一般地,對任意復(fù)數(shù),有。

證明:設(shè)

,

…………………………………………………16分)

22、(18分)

1 ………………………………………………………………6分)

(2)由解得

解得…………………………………12分)

(3)     ,

,

時,,,

對于時,,命題成立!14分)

以下用數(shù)學(xué)歸納法證明,且時,都有成立

假設(shè)時命題成立,即,

那么時,命題也成立。

存在滿足條件的區(qū)間………………………………18分)

 


同步練習冊答案