(1)求函數(shù)的解析式, 查看更多

 

題目列表(包括答案和解析)





⑴求函數(shù)的解析式;
⑵若對于區(qū)間上任意兩個自變量的值都有,求實(shí)數(shù)的最小值;
⑶若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍

查看答案和解析>>

求函數(shù)的解析式:
(1)求一次函數(shù)f(x),使f[f(x)]=9x+1;
(2)已知f(x-2)=x2-3x+1,求f(x).

查看答案和解析>>

求函數(shù)的解析式:
(1)求一次函數(shù)f(x),使f[f(x)]=9x+1;
(2)已知f(x-2)=x2-3x+1,求f(x).

查看答案和解析>>

設(shè)

     (Ⅰ)求函數(shù)的解析式;

 (Ⅱ)已知常數(shù), 若在區(qū)間上是增函數(shù),求的取值范圍.

查看答案和解析>>

求函數(shù)的解析式:
(1)求一次函數(shù)f(x),使f[f(x)]=9x+1;
(2)已知f(x-2)=x2-3x+1,求f(x).

查看答案和解析>>

一、             填空題(48分)

1、4 2、(理)20(文) 3、  4、  5、  67、(理)(文)4    86  9、 10、  11、 12、

二、             選擇題(16分)

13、B    14B   15、C   16、A

三、             解答題(86分)

17、(12分)(1,則……………………… 6分)

(2………………………………………(9分)

…………………………………………………………12分)

18、(12分)(1它是有一條側(cè)棱垂直于底面的四棱錐

 

 

 

 

…………………………………………………………6分)

(注:評分注意實(shí)線、虛線;垂直關(guān)系;長度比例等)

2)由題意,,則

,

需要3個這樣的幾何體可以拼成一個棱長為6的正方體12分)

19、(14分)

(1)拋物線的焦點(diǎn)為(1,0……………………………………………………2分)

設(shè)橢圓方程為,則

∴橢圓方程為……………………………………………6分)

(2)設(shè),則

  ………………8分)

①     當(dāng)時,,即時,;

②     當(dāng)時,,即時,

綜上,……………………………………14分)

(注:也可設(shè)解答,參照以上解答相應(yīng)評分)

20、(14分)

1)設(shè)當(dāng)天的旅游收入為L,由

……………………………(2分)

,知…………………………………………(4分)

,。

即當(dāng)天的旅游收入是20萬到60萬。……………………………………………(7分)

(2)則每天的旅游收入上繳稅收后不低于220000

  )得;

  )得;

………………………………………………………………………(11分)

代入可得

即每天游客應(yīng)不少于1540人。……………………………………………………(14分)

21、(16分)

(1)     ,得(4分)

(2)     ,得

,所以是不唯一的。…………………………………10分)

(3,,;

…………………………………………12分)

(文)………………………………………………………………………………16分)

(理)一般地,對任意復(fù)數(shù),有。

證明:設(shè)

,

。…………………………………………………16分)

22、(18分)

1 ………………………………………………………………6分)

(2)由解得

解得…………………………………12分)

(3)    

,

當(dāng)時,,

對于時,,命題成立!14分)

以下用數(shù)學(xué)歸納法證明,且時,都有成立

假設(shè)時命題成立,即

那么時,命題也成立。

存在滿足條件的區(qū)間。………………………………18分)

 


同步練習(xí)冊答案