22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

在△OAB的邊OA,OB上分別有一點(diǎn)P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點(diǎn)R,若a,b.

   (1)用a b表示;

   (2)過RRHAB,垂足為H,若| a|=1, | b|=2, a b的夾角的取值范圍.

查看答案和解析>>

(本小題滿分14分)已知A(8,0),B、C兩點(diǎn)分別在y軸和x軸上運(yùn)動(dòng),并且滿足

(1)求動(dòng)點(diǎn)P的軌跡方程。

(2)若過點(diǎn)A的直線L與動(dòng)點(diǎn)P的軌跡交于M、N兩點(diǎn),且

其中Q(-1,0),求直線L的方程.

查看答案和解析>>

(本小題滿分14分)

 已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m          

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè)a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。

查看答案和解析>>

(本小題滿分14分)

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。

(Ⅰ)對任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

(Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有

aSnb?若存在,求λ的取值范圍;若不存在,說明理由。

查看答案和解析>>

(本小題滿分14分)

如圖(1),是等腰直角三角形,、分別為、的中點(diǎn),將沿折起, 使在平面上的射影恰為的中點(diǎn),得到圖(2).

(Ⅰ)求證:

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

一、選擇題(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空題(4分x 4=16分)

  13.0.1  14.63  15.  16.①③

三、解答題(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期為 …………………6分(2)∵成等比數(shù)列   ∴

       ………………………8分

   ∴

   ∴         ………………………………………………10分

18.解:(1)設(shè)公差成等比數(shù)列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

              ………………………………………………5分

       ………………………………………7分

(2)                ………………………………………………8分

當(dāng)時(shí),  ………………………………………10分

當(dāng)時(shí),   …………………………7分

19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,

                ……………………………………………………4分

(2)可能值為        ……………………………………………………………5分

      …………………………10分

     …………………………12分

20.解:(1)連結(jié)    為正△ …1分

                  

                                       3分

          

 

即點(diǎn)的位置在線段的四等分點(diǎn)且靠近處  ………………………………………6分(2)過,連

由(1)知(三垂線定理)

為二面角的平面角……9分

   

   

中,

中,

∴二面角的大小為     ………………………………………12分

(說明:若用空間向量解,請參照給分)

21.解:(1)設(shè),由

 

……………………2分

…………………………12分

又∵為定值,        ………………5分

為定值,∴為定值。

(2)∵,∴拋物線方程為:設(shè)點(diǎn)

由(1)知         ………………………………8分

又∵過點(diǎn)  ∴  ∴  ∴………………………………9分

代入橢圓方程得:

  ………………11分

                  

當(dāng)且僅當(dāng)                 即           上式取等號

                    

∴此時(shí)橢圓的方程為:             ………………………………………12分

22.解:(1)∵  ∴…1分

    設(shè)   ……2分

上為減函數(shù)  又   

時(shí),,∴上是減函數(shù)………4分(2)①∵時(shí)

 ∴…………………………………6分

又≤對一切恒成立 ∴        ……………8分

②顯然當(dāng)時(shí),不等式成立                 …………………………9分

當(dāng),原不等式等價(jià)于 ………10分

下面證明一個(gè)更強(qiáng)的不等式:…①

……②亦即 …………………………11分

由(1) 知上是減函數(shù)   又  ∴……12分

∴不等式②成立,從而①成立  又

綜合上面∴時(shí),原不等式成立     ……………………………14分

 

 

 


同步練習(xí)冊答案