題目列表(包括答案和解析)
如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;
(Ⅱ)若為側(cè)棱PB的中點(diǎn),求直線AE與底面所成角的正弦值.
【解析】第一問(wèn)中,利用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以第二問(wèn)中結(jié)合取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,
則為直線AE與底面ABC 所成角,
解
(Ⅰ) 證明:由用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如圖, 取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,
因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,
又EH//PO,所以EH平面ABC ,
則為直線AE與底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=,
由(Ⅰ)已證平面PBC,所以,即,
故,
于是
所以直線AE與底面ABC 所成角的正弦值為
設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().
(1) 當(dāng)時(shí),試寫(xiě)出拋物線上的三個(gè)定點(diǎn)、、的坐標(biāo),從而使得
;
(2)當(dāng)時(shí),若,
求證:;
(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:
“若,則.”
開(kāi)展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:
① 試構(gòu)造一個(gè)說(shuō)明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評(píng)分說(shuō)明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.
【解析】第一問(wèn)利用拋物線的焦點(diǎn)為,設(shè),
分別過(guò)作拋物線的準(zhǔn)線的垂線,垂足分別為.
由拋物線定義得到
第二問(wèn)設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
第三問(wèn)中①取時(shí),拋物線的焦點(diǎn)為,
設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點(diǎn)為,設(shè),
分別過(guò)作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,
故可取滿足條件.
(2)設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">
;
所以.
(3) ①取時(shí),拋物線的焦點(diǎn)為,
設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)
② 設(shè),分別過(guò)作
拋物線的準(zhǔn)線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無(wú)關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則
,
而,所以.
(說(shuō)明:本質(zhì)上只需構(gòu)造滿足條件且的一組個(gè)不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo)()滿足 ”,即:
“當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo)()滿足,則”.此命題為真.事實(shí)上,設(shè),
分別過(guò)作拋物線準(zhǔn)線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱”,即:
“當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱,則”.此命題為真.(證略)
如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過(guò)作圓柱的截面交下底面于.
(1)求證:;
(2)若四邊形ABCD是正方形,求證;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個(gè)三角函數(shù)值。
【解析】第一問(wèn)中,利用由圓柱的性質(zhì)知:AD平行平面BCFE
又過(guò)作圓柱的截面交下底面于.∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF AD∥EF
第二問(wèn)中,由線面垂直得到線線垂直。四邊形ABCD是正方形 又
BC、AE是平面ABE內(nèi)兩條相交直線
第三問(wèn)中,設(shè)正方形ABCD的邊長(zhǎng)為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE
又過(guò)作圓柱的截面交下底面于.∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF 。粒摹危牛
(2) 四邊形ABCD是正方形 又
BC、AE是平面ABE內(nèi)兩條相交直線
(3)設(shè)正方形ABCD的邊長(zhǎng)為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿足.
(1) 求常數(shù)的值和數(shù)列的通項(xiàng)公式;
(2) 若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來(lái)的順序組成一個(gè)新的數(shù)列,試寫(xiě)出數(shù)列的通項(xiàng)公式;
(3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)中解:由得,,
又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,
則即,所以p=1
故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.
此時(shí)也滿足,則所求常數(shù)的值為1且
第二問(wèn)中,解:由等比數(shù)列的性質(zhì)得:
(i)當(dāng)時(shí),;
(ii) 當(dāng)時(shí),,
所以
第三問(wèn)假設(shè)存在正整數(shù)n滿足條件,則,
則(i)當(dāng)時(shí),
,
如圖,,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).
(1)寫(xiě)出、和之間的等量關(guān)系,以及、和之間的等量關(guān)系;
(2)求證:();
(3)設(shè),對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.
【解析】第一問(wèn)利用有,得到
第二問(wèn)證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,
得
第三問(wèn)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即
解:(1)依題意,有,,………………4分
(2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分
②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分
則當(dāng)時(shí),由歸納假設(shè)及,
得.
即
解得(不合題意,舍去)
即當(dāng)時(shí),命題成立. …………………………………………4分
綜上所述,對(duì)所有,. ……………………………1分
(3)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即
.……………2分
由題意,有. 所以,
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com