(1)求證:.并求的長(zhǎng), 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的拋物線過(guò)點(diǎn)B、D.
(1)求點(diǎn)A的坐標(biāo)(用m表示);
(2)求拋物線的解析式;
(3)設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連接PQ并延長(zhǎng)交BC于點(diǎn)E,連接BQ并延長(zhǎng)交AC于點(diǎn)F,試證明:FC(AC+EC)為定值.

查看答案和解析>>

如圖,拋物線C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0),
(1)求拋物線C1的解析式;
(2)如圖1,將拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線C2,直線y=x+c,經(jīng)過(guò)點(diǎn)D交y軸于點(diǎn)A,交拋物線C2于點(diǎn)B,拋物線C2的頂點(diǎn)為P,求△DBP的面積
(3)如圖2,連接AP,過(guò)點(diǎn)B作BC⊥AP于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連接PQ并延長(zhǎng)交BC于點(diǎn)E,連接BQ并延長(zhǎng)交AC于點(diǎn)F,試證明:FC(AC+EC)為定值.
精英家教網(wǎng)

查看答案和解析>>

如圖,四邊形ABCD、BEFG均為正方形,
(1)如圖1,連接AG、CE,試判斷AG和CE的數(shù)量關(guān)系和位置關(guān)系并證明;
(2)將正方形BEFG繞點(diǎn)B順時(shí)針旋轉(zhuǎn)β角(0°<β<180°),如圖2,連接AG、CE相交于點(diǎn)M,連接MB,當(dāng)角β發(fā)生變化時(shí),∠EMB的度數(shù)是否發(fā)生變化?若不變化,求出∠EMB的度數(shù);若發(fā)生變化,請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,過(guò)點(diǎn)A作AN⊥MB交MB的延長(zhǎng)線于點(diǎn)N,請(qǐng)直接寫出線段CM與BN的數(shù)量關(guān)系:
CM=
2
BN
CM=
2
BN

查看答案和解析>>

已知:如圖,正方形ABCD的邊長(zhǎng)為a,BM,DN分別平分正方形的兩個(gè)外角,且滿足∠MAN=45°,連接MC,NC,MN.
(1)填空:與△ABM相似的三角形是△
NDA
NDA
,BM•DN=
a2
a2
;(用含a的代數(shù)式表示)
(2)求∠MCN的度數(shù);
(3)猜想線段BM,DN和MN之間的等量關(guān)系并證明你的結(jié)論.

查看答案和解析>>

已知,如圖,正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上,且∠EAF=45°,AG⊥EF于G,EG=2,F(xiàn)G=3,求AG的邊長(zhǎng).小萍同學(xué)靈活運(yùn)用旋轉(zhuǎn)的知識(shí),將圖形進(jìn)行旋轉(zhuǎn)變換,巧妙地解答了此題.請(qǐng)按照小萍的思路,探究并解答下列問(wèn)題:
(1)把△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得△ABH,請(qǐng)?jiān)趫D中畫出旋轉(zhuǎn)后的圖形;
(2)判斷H、B、E三點(diǎn)是否在一條直線上,若在,請(qǐng)證明:△AEF≌△AEH;若不在,請(qǐng)說(shuō)明理由;
(3)設(shè)AG=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案