5.如圖.已知AB=DC.AC=DB,求證:BE=CE 查看更多

 

題目列表(包括答案和解析)

(1)閱讀理解:
課外興趣小組活動時,老師提出了如下問題: 如圖,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍。
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連結(jié)BE(或?qū)ⅰ鰽CD繞點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4。
感悟:解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中。
(2)問題解決:
受到(1)的啟發(fā),請你證明下面命題:如圖,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連結(jié)EF。
①求證:BE+CF>EF;
②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明。
(3)問題拓展:
如圖,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連結(jié)EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明。

查看答案和解析>>

閱讀:下面是某同學(xué)證明一道幾何題的過程.

已知:四邊形ABCD中,AB=DC,AC=BD,AD≠BC

求證:四邊形ABCD是等腰梯形.

證明:過D作DE∥AB交BC于E(如圖所示),

則∠ABE=∠1,①

∵AB=DC,AC=DB,BC=CB,

∴△ABC≌△DCB,②

∴∠ABC=∠DCB,③

∴∠1=∠DCB,④

∴AB=DC=DE,⑤

∴四邊形ABED是平行四邊形.⑥

∴AD∥BC.⑦

BE=AD.⑧

又AD≠BC,∴BE≠BC.

∴點E,C是不同的點,DC不平行于AB.⑨

∵AB=CD,∴四邊形ABCD是等腰梯形.⑩

讀后填空:

(1)證明過程是否有錯誤?如有,錯在第幾步.答:__________;

(2)作DE∥AB的目的是__________;

(3)有人認為第9步是多余的,你認為是否多余?為什么?答:________;

(4)判斷四邊形ABED為平行四邊形的依據(jù)是__________;

(5)判斷四邊形ABCD是等腰梯形的依據(jù)是__________;

(6)若題目中沒有AD≠BC,那么四邊形ABCD一定是等腰梯形嗎?為什么?答_________.

查看答案和解析>>

已知:在四邊形ABCD中,AB=DC,AC=DB,AD≠BC。求證:四邊形ABCD是等腰梯形。

下面是某同學(xué)證明這道題的過程:

證明:過D作DE∥AB,交BC于E,如圖19-3-10所示,則∠ABC=∠1。①

∵AB=DC,AC=DB,BC=CB,

∴△ABC≌△DCB,②

∴∠ABC=∠DCB,③

∴∠1=∠DCB,④

∴AB=DC=DE,⑤

∴四邊形ABED是平行四邊形,⑥

∴AD∥BC,⑦

BE=AD,⑧

又∵AD≠BC,∴BE≠B,

∴點E,C是不同的點,DC不平行于AB。⑨

∵AB=DC,

∴四邊形ABCD是等腰梯形。⑩

閱讀后填空:

(1)上面的證明過程是否有錯誤?如有,錯在第幾步?答:_________;

(2)作DE∥AB的目的是__________;

(3)有人認為第⑨步是多余的,你認為它是否多余?為什么?_________;

(4)判斷四邊形ABED是平行四邊形的依據(jù)為___________;

(5)判斷四這形ABCD是等腰梯形的依據(jù)為_____________;

(6)若題設(shè)中沒有AD≠BC,那么四邊形ABCD一定是等腰梯形嗎?為什么?

答:_________________。

查看答案和解析>>

課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或?qū)ⅰ鰽CD繞點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
(1)問題解決:
受到(1)的啟發(fā),請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
①求證:BE+CF>EF;
②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
(2)問題拓展:
如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

閱讀理
課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或?qū)ⅰ鰽CD繞點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
(1)問題解決:
受到(1)的啟發(fā),請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
①求證:BE+CF>EF;
②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
(2)問題拓展:
如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.

精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊答案