如圖,在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā),沿x軸向右以毎秒1個(gè)單位長的速度運(yùn)動t秒(t>0),拋物線y=x
2+bx+c經(jīng)過點(diǎn)O和點(diǎn)P,已知矩形ABCD的三個(gè)頂點(diǎn)為 A (1,0),B (1,-5),D (4,0)。
(1)求c,b (用含t的代數(shù)式表示);
(2)當(dāng)4<t<5時(shí),設(shè)拋物線分別與線段AB,CD交于點(diǎn)M,N。
①在點(diǎn)P的運(yùn)動過程中,你認(rèn)為∠AMP的大小是否會變化?若變化,說明理由;若不變,求出∠AMP的值;
②求△MPN的面積S與t的函數(shù)關(guān)系式,并求t為何值時(shí),S=
;
(3)在矩形ABCD的內(nèi)部(不含邊界),把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“好點(diǎn)”,若拋物線將這些“好點(diǎn)”分成數(shù)量相等的兩部分,請直接寫出t的取值范圍。