18.一系列數(shù)如圖排列.第四行最大的數(shù)是l0.第五行最大的數(shù)是15.照此排列規(guī)律.第六行最大的數(shù)是 .第n行最大的數(shù)是 . 查看更多

 

題目列表(包括答案和解析)

一系列數(shù)如圖排列,第四行最大的數(shù)是l0,第五行最大的數(shù)是15,照此排列規(guī)律,第六行最大的數(shù)是      ,第n行最大的數(shù)是        (用含n的代數(shù)式表示)。

查看答案和解析>>

如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項的系數(shù)。
例如,展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;
再如,展開式中的系數(shù)1、3、3、1恰好對應(yīng)圖中第四行的數(shù)字。
請認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4=    ▲   

查看答案和解析>>

如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項的系數(shù)。

例如,展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;

再如,展開式中的系數(shù)1、3、3、1恰好對應(yīng)圖中第四行的數(shù)字。

請認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4=    ▲   

 

查看答案和解析>>

如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項的系數(shù).例如,(a+b)2=a2+2ab+b2展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;再如,(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1、3、3、1恰好對應(yīng)圖中第四行的數(shù)字.請認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4=   

查看答案和解析>>

如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項的系數(shù).例如,(a+b)2=a2+2ab+b2展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;再如,(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1、3、3、1恰好對應(yīng)圖中第四行的數(shù)字.請認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4=________.

查看答案和解析>>


同步練習(xí)冊答案