17. +=1解: 查看更多

 

題目列表(包括答案和解析)

解:(1)x2-2x-2=0;
(2)(x+3)2-x(x+3)=0.

查看答案和解析>>

21、解:因為∠B=∠C
所以AB∥CD(
內(nèi)錯角相等,兩直線平行

又因為AB∥EF
所以EF∥CD(
平行線的傳遞性

所以∠BGF=∠C(
兩直線平行,同位角相等


(2)如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠3
試說明:AD平分∠BAC
解:因為AD⊥BC,EG⊥BC
所以AD∥EG(
同垂直于一條直線的兩個垂線段平行

所以∠1=∠E(
兩直線平行,同位角相等

∠2=∠3(
兩直線平行,內(nèi)錯角相等
 )
又因為∠3=∠E
所以∠1=∠2
所以AD平分∠BAC(
等量代換


(3)如圖,EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度數(shù).
解:因為EF∥AD,
所以∠2=
3
 (
兩直線平行,同位角相等

又因為∠1=∠2
所以∠1=∠3  (
等量代換

所以AB∥
DG
 (
內(nèi)錯角相等,兩直線平行

所以∠BAC+
∠DGA
=180°(
兩直線平行,同旁內(nèi)角互補

因為∠BAC=70°
所以∠AGD=
110°

查看答案和解析>>

解:(1)OA=1,OC=2

A點坐標為(0,1),C點坐標為(2,0)

設直線AC的解析式為y=kx+b

解得

直線AC的解析式為··················· 2分

(2)

(正確一個得2分)························· 8分

(3)如圖,設

點作F

由折疊知

或2··········· 10分

查看答案和解析>>

解:因為∠B=∠C
所以AB∥CD(________)
又因為AB∥EF
所以EF∥CD(________)
所以∠BGF=∠C(________)

(2)如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠3
試說明:AD平分∠BAC
解:因為AD⊥BC,EG⊥BC
所以AD∥EG(________)
所以∠1=∠E(________)
∠2=∠3(________ )
又因為∠3=∠E
所以∠1=∠2
所以AD平分∠BAC(________)

(3)如圖,EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度數(shù).
解:因為EF∥AD,
所以∠2=________ (________)
又因為∠1=∠2
所以∠1=∠3。╛_______)
所以AB∥________ (________)
所以∠BAC+________=180°(________)
因為∠BAC=70°
所以∠AGD=________.

查看答案和解析>>

解:(1)x2-2x-2=0;
(2)(x+3)2-x(x+3)=0.

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

C

B

B

C

B

D

A

D

D

C

 

二、填空題

題 號

11

12

13

14

15

答 案

2<x<8

(-3,-7)

2cm

34.28

 

 

 

 

三、解答題(本大題有7題,共55分)

16.1

17.經(jīng)檢驗:x1=0,x2=2是原方程的根.

18.解:(1)根據(jù)題意有AF∥BC,∴∠ACB=∠GAF,又  ∠ABC=∠AFG=90

 ∴△ABC∽△GFA

,得BC=3.2(m),CD=(2+3)-3.2=1.8(m)

 (2)設樓梯應建x個臺階,則,

解得,14<x<16

      ∴樓梯應建15個臺階 

 

19.(1)    (2)     不公平改為“如果和為0,李明得3分,其余不變

20.解:(1)△AEF是等邊三角形.

由折疊過程易得:

∵BC∥AD,∴     

∴△AEF是等邊三角形.                

 。2)不一定. 

 當矩形的長恰好等于等邊△AEF的邊AF時,

即矩形的寬∶長=ABAFsin60°=時正好能折出.

 如果設矩形的長為a,寬為b

可知當時,按此法一定能折出等邊三角形;

  當時,按此法無法折出完整的等邊三角形.

21.(1)證明:∵AB = AC,點D是邊BC的中點,∴AD⊥BD.

              又∵BD是圓O直徑,∴AD是圓O的切線.

(2)解:連結(jié)OP,OE.

            由BC = 8,得CD = 4,OC = 6,OP = 2.

∵PC是圓O的切線,O為圓心,∴

            于是,利用勾股定理,得

,

∴△DCE∽△PCO.

,即得

∵PE、DE是圓O的切線,∴

于是,由,得

又∵OB = OP,∴

于是,由,得

.∴OE // AB.

,即得

 

 

22. 解:(1)因為二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(-1,0)、B(3,0)、N(2,3)

所以,可建立方程組:,解得:

所以,所求二次函數(shù)的解析式為y=-x2+2x+3,

所以,頂點M(1,4),點C(0,3) -------2分

(2)直線y=kx+d經(jīng)過C、M兩點,所以,即k=1,d=3,

直線解析式為y=x+3

令y=0,得x=-3,故D(-3,0)

∴ CD=,AN=,AD=2,CN=2

∴CD=AN,AD=CN

∴ 四邊形CDAN是平行四邊形

(3)假設存在這樣的點P,使以點P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切,因為這個二次函數(shù)的對稱軸是直線x=1,故可設P(1,),

則PA是圓的半徑且PA2=y02+22,

過P作直線CD的垂線,垂足為Q,則PQ=PA時以P為圓心的圓與直線CD相切。

由第(2)小題易得:△MDE為等腰直角三角形,故△PQM也是等腰直角三角形,

由P(1,)得PE=,PM=|4-|,,

由PQ2=PA2得方程:,解得,符合題意,

所以,滿足題意的點P存在,其坐標為(1,)或(1,)

 

 

 


同步練習冊答案