21. 已知:如圖12-1.在△ABC中.AB = AC.點D是邊BC的中點.以BD為直徑作圓O.交邊AB于點P.聯(lián)結(jié)PC.交AD于點E.求證:AD是圓O的切線, 證明: 如圖12-2.當(dāng)PC是圓O的切線.BC = 8.求AD的長. 查看更多

 

題目列表(包括答案和解析)

已知:如圖①,tan∠MON=
1
2
,點A是OM上一定點,AC⊥ON于點C,AC=4cm,點B在線段OC上,且tan∠ABC=2.點P從點O出發(fā),以每秒
5
cm的速度在射線OM上勻速運動,點Q、R在射線ON上,且PQ∥AB,PR∥AC.設(shè)點P運動了x秒.
(1)用x表示線段OP的長為
 
cm;用x表示線段OR的長為
 
cm;
(2)設(shè)運動過程中△PQR與△ABC重疊部分的面積為S,試寫出S與時間的x函數(shù)關(guān)系式;精英家教網(wǎng)
(圖②供同學(xué)畫草圖使用)
(3)當(dāng)點P運動幾秒時,△PQR與△ABC重疊部分的面積為
9
4

查看答案和解析>>

已知:如圖,在△ABC中,∠ACB=90°,∠ABC的平分線BD交AC于點D,DE⊥DB交AB于點E,過B、D、E三點精英家教網(wǎng)作⊙O.
(1)求證:AC是⊙O的切線;
(2)設(shè)⊙O交BC于點F,連接EF,若BC=9,CA=12.求
EFAC
的值.

查看答案和解析>>

已知:如圖,在△ABC中,AB=BC,D是AC中點,BE平分∠ABD交AC于點E,點O是AB上一點,⊙O過B、E兩點,交精英家教網(wǎng)BD于點G,交AB于點F.
(1)求證:AC與⊙O相切;
(2)當(dāng)BD=2,sinC=
12
時,求⊙O的半徑.

查看答案和解析>>

精英家教網(wǎng)已知:如圖,△ABC中,AB=AC,∠ABC、∠ACB的平分線交于點E,直線AE交BC于D.
求證:AD⊥BC
證明:∵AB=AC  (已知),∴∠ABC=∠ACB  (
 
 )
∵BE平分∠ABC (已知),CE平分∠ACB (已知),
∴∠EBD=
1
2
 
,∠ECD=
1
2
 
 ( 角平分線的定義  ),
∴∠EBD=∠ECD  ( 等量代換 ),
∴BE=CE  (
 
  ),
在△ABE和△ACE中,
AB=AC(已知)
BE=CE(已證)
AE=AE(公共邊)

∴△ABE≌△ACE  (
 
),
∴∠BAE=∠CAE  (全等三角形對應(yīng)角相等),
∵AB=AC (已知),
∴AD⊥BC  (
 
).

查看答案和解析>>

精英家教網(wǎng)已知:如圖,在△ABC中,D為邊BC上的一點,AB=13,AD=12,AC=15,BD=5.求△ABC的面積.

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

C

B

B

C

B

D

A

D

D

C

 

二、填空題

題 號

11

12

13

14

15

答 案

2<x<8

(-3,-7)

2cm

34.28

 

 

 

 

三、解答題(本大題有7題,共55分)

16.1

17.經(jīng)檢驗:x1=0,x2=2是原方程的根.

18.解:(1)根據(jù)題意有AF∥BC,∴∠ACB=∠GAF,又  ∠ABC=∠AFG=90,

 ∴△ABC∽△GFA

,得BC=3.2(m),CD=(2+3)-3.2=1.8(m)

 (2)設(shè)樓梯應(yīng)建x個臺階,則,

解得,14<x<16

      ∴樓梯應(yīng)建15個臺階 

 

19.(1)    (2)     不公平改為“如果和為0,李明得3分,其余不變

20.解:(1)△AEF是等邊三角形.

由折疊過程易得:

∵BC∥AD,∴     

∴△AEF是等邊三角形.                

  (2)不一定. 

 當(dāng)矩形的長恰好等于等邊△AEF的邊AF時,

即矩形的寬∶長=ABAFsin60°=時正好能折出.

 如果設(shè)矩形的長為a,寬為b

可知當(dāng)時,按此法一定能折出等邊三角形;

  當(dāng)時,按此法無法折出完整的等邊三角形.

21.(1)證明:∵AB = AC,點D是邊BC的中點,∴AD⊥BD.

              又∵BD是圓O直徑,∴AD是圓O的切線.

(2)解:連結(jié)OP,OE.

            由BC = 8,得CD = 4,OC = 6,OP = 2.

∵PC是圓O的切線,O為圓心,∴

            于是,利用勾股定理,得

,,

∴△DCE∽△PCO.

,即得

∵PE、DE是圓O的切線,∴

于是,由,得

又∵OB = OP,∴

于是,由,得

.∴OE // AB.

,即得

 

 

22. 解:(1)因為二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(-1,0)、B(3,0)、N(2,3)

所以,可建立方程組:,解得:

所以,所求二次函數(shù)的解析式為y=-x2+2x+3,

所以,頂點M(1,4),點C(0,3) -------2分

(2)直線y=kx+d經(jīng)過C、M兩點,所以,即k=1,d=3,

直線解析式為y=x+3

令y=0,得x=-3,故D(-3,0)

∴ CD=,AN=,AD=2,CN=2

∴CD=AN,AD=CN

∴ 四邊形CDAN是平行四邊形

(3)假設(shè)存在這樣的點P,使以點P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切,因為這個二次函數(shù)的對稱軸是直線x=1,故可設(shè)P(1,),

則PA是圓的半徑且PA2=y02+22,

過P作直線CD的垂線,垂足為Q,則PQ=PA時以P為圓心的圓與直線CD相切。

由第(2)小題易得:△MDE為等腰直角三角形,故△PQM也是等腰直角三角形,

由P(1,)得PE=,PM=|4-|,,

由PQ2=PA2得方程:,解得,符合題意,

所以,滿足題意的點P存在,其坐標(biāo)為(1,)或(1,)

 

 

 


同步練習(xí)冊答案