在坐標(biāo)系中.平面的法向量. 查看更多

 

題目列表(包括答案和解析)

在空間坐標(biāo)系中,已知三點(diǎn)A(1,0,0),B(0,1,0),C(0,0,1),則平面ABC的單位法向量是
 

查看答案和解析>>

在平面直角坐標(biāo)系中,對(duì)其中任何一向量X=(x1,x2),定義范數(shù)||X||,它滿足以下性質(zhì):(1)||X||≥0,當(dāng)且僅當(dāng)X為零向量時(shí),不等式取等號(hào);(2)對(duì)任意的實(shí)數(shù)λ,||λX||=|λ|•||X||(注:此處點(diǎn)乘號(hào)為普通的乘號(hào));(3)||X||+||Y||≥||X+Y||.應(yīng)用類比的方法,我們可以給出空間直角坐標(biāo)系下范數(shù)的定義,現(xiàn)有空間向量X=(x1,x2,x3),下面給出的幾個(gè)表達(dá)式中,可能表示向量X的范數(shù)的是
 
(把所有正確答案的序號(hào)都填上)
(1)
x12
+2x22+x32(2)
2x2-x22+x32
 (3)
x12+x22+x32+2
  (4)
x12+x22+x32

查看答案和解析>>

在平面直角坐標(biāo)系中,已知O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,b),點(diǎn)B的坐標(biāo)為(cosωx,sinωx),其中a2+b2≠0且ω>0.設(shè)f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在區(qū)間[0,2π]內(nèi)的解集;
(2)若點(diǎn)A是過(guò)點(diǎn)(-1,1)且法向量為
n
=(-1,1)
的直線l上的動(dòng)點(diǎn).當(dāng)x∈R時(shí),設(shè)函數(shù)f(x)的值域?yàn)榧螹,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實(shí)數(shù)m的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)f(x)的性質(zhì)取決于變量a、b和ω的值.當(dāng)x∈R時(shí),試寫(xiě)出一個(gè)條件,使得函數(shù)f(x)滿足“圖象關(guān)于點(diǎn)(
π
3
,0)
對(duì)稱,且在x=
π
6
處f(x)取得最小值”.

查看答案和解析>>

在平面直角坐標(biāo)系中,已知O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,b),點(diǎn)B的坐標(biāo)為(cosωx,sinωx),其中a2+b2≠0且ω>0.設(shè)
(1)若,b=1,ω=2,求方程f(x)=1在區(qū)間[0,2π]內(nèi)的解集;
(2)若點(diǎn)A是過(guò)點(diǎn)(-1,1)且法向量為的直線l上的動(dòng)點(diǎn).當(dāng)x∈R時(shí),設(shè)函數(shù)f(x)的值域?yàn)榧螹,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實(shí)數(shù)m的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)f(x)的性質(zhì)取決于變量a、b和ω的值.當(dāng)x∈R時(shí),試寫(xiě)出一個(gè)條件,使得函數(shù)f(x)滿足“圖象關(guān)于點(diǎn)對(duì)稱,且在處f(x)取得最小值”.

查看答案和解析>>

在平面直角坐標(biāo)系中,若為坐標(biāo)原點(diǎn),則、三點(diǎn)在同一直線上的充要條件為存在唯一的實(shí)數(shù),使得成立,此時(shí)稱實(shí)數(shù)為“向量關(guān)于的終點(diǎn)共線分解系數(shù)”.若已知,且向量是直線的法向量,則“向量關(guān)于的終點(diǎn)共線分解系數(shù)”為             

 

查看答案和解析>>


同步練習(xí)冊(cè)答案