如圖.直線AC∥BD.連接AB.直線AC.BD及線段AB把平面分成①.②.③.④四個部分.規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時.連接PA.PB.構(gòu)成.∠APB.∠PBD三個角.(提示:有公共頂點的兩條重合的射線所組成的角是0°角)(1)當動點P落在第①部分時.求證:∠APB=∠PAC+∠PBD,(2)當動點P落在第②部分時.∠APB=∠PAC+∠PBD是否成立?(3)當動點P落在第③部分時.全面探究∠APB.∠PAC.∠PBD之間的關(guān)系.并寫出動點P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明. 查看更多

 

題目列表(包括答案和解析)

27、如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°角)
(1)當動點P落在第①部分時,求證:∠APB=∠PAC+∠PBD;
(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當動點P在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動點P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>

如圖,直線AC∥BD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個角. (提示:有公共端點的兩條重合的射線所組成的角是0°)
(1)當動點P落在第①部分時,有∠APB=∠PAC+∠PBD,請說明理由;
(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?若不成立,試寫出∠PAC、∠APB、∠PBD三個角的等量關(guān)系(無需說明理由);
(3)當動點P在第③部分時,探究∠PAC、∠APB、∠PBD之間的關(guān)系,寫出你發(fā)現(xiàn)的一個結(jié)論并加以說明.

查看答案和解析>>

如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°角)
(1)當動點P落在第①部分時,試說明∠APB=∠PAC+∠PBD;
(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當動點P在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動點P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以說明.

查看答案和解析>>

如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分,當動點P落在某個部分時,連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個角。(提示:有公共端點的兩條重合的射線所組成的角是0°角)
(1)當動點P落在第①部分時,求證:∠APB=∠PAC+∠PBD;
(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當動點P在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動點P的具體位置和相應(yīng)的結(jié)論,選擇其中一種結(jié)論加以證明。

查看答案和解析>>

如圖,直線AC∥BD,連接AB,直線AC,BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連接PA,PB,構(gòu)成∠PAC,∠APB,∠PBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°角)
(1)當動點P落在第①部分時,求證:∠APB=∠PAC+∠PBD;
(2)當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)當動點P落在第③部分時,全面探究∠PAC,∠APB,∠PBD之間的關(guān)系,并寫出動點P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>


同步練習(xí)冊答案