(2)如果...四點(diǎn)共線.問(wèn):是否存在.使以線段為直徑的圓與拋物線有異于.的交點(diǎn)?如果存在.求出的取值范圍.并求出該交點(diǎn)到直線的距離,若不存在.請(qǐng)說(shuō)明理由. 絕密★啟用前 秘密★啟用后2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試 查看更多

 

題目列表(包括答案和解析)

已知拋物線y=x2和三個(gè)點(diǎn)

M(x0,y0)、P(0,y0)、N(-x0,y0)(y0,y0>0),過(guò)點(diǎn)M的一條直線交拋物線于A、B兩點(diǎn),AP、BP的延長(zhǎng)線分別交曲線C于E、F.

(1)證明E、F、N三點(diǎn)共線;

(2)如果A、B、M、N四點(diǎn)共線,問(wèn):是否存在y0,使以線段AB為直徑的圓與拋物線有異于A、B的交點(diǎn)?如果存在,求出y0的取值范圍,并求出該交點(diǎn)到直線AB的距離;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知拋物線y=x2和三個(gè)點(diǎn)Mx1,y0)、P(0,y0)(y0≠x20,y0>0),過(guò)點(diǎn)M的一條直線交拋物線于A、B兩點(diǎn),AP、BP的延長(zhǎng)線分別交拋物線于點(diǎn)E、F.

(1)證明E、F、N三點(diǎn)共線;

(2)如果A、B、N四點(diǎn)共線,問(wèn):是否存在y0,使以線段AB為直徑的圓與拋物線有異于A、B的交點(diǎn)?如果存在,求出y0的取值范圍,并求出該交點(diǎn)到直線AB的距離;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知拋物線和三個(gè)點(diǎn),過(guò)點(diǎn)的一條直線交拋物線于兩點(diǎn),的延長(zhǎng)線分別交曲線

(1)證明三點(diǎn)共線;

(2)如果、、四點(diǎn)共線,問(wèn):是否存在,使以線段為直徑的圓與拋物線有異于、的交點(diǎn)?如果存在,求出的取值范圍,并求出該交點(diǎn)到直線的距離;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

 

已知拋物線和三個(gè)點(diǎn),過(guò)點(diǎn)的一條直線交拋物線于、兩點(diǎn),的延長(zhǎng)線分別交曲線

(1)證明三點(diǎn)共線;

(2)如果、、四點(diǎn)共線,問(wèn):是否存在,使以線段為直徑的圓與拋物線有異于、的交點(diǎn)?如果存在,求出的取值范圍,并求出該交點(diǎn)到直線的距離;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>


已知拋物線和三個(gè)點(diǎn),過(guò)點(diǎn)的一條直線交拋物線于、兩點(diǎn),的延長(zhǎng)線分別交曲線
(1)證明三點(diǎn)共線;
(2)如果、、四點(diǎn)共線,問(wèn):是否存在,使以線段為直徑的圓與拋物線有異于的交點(diǎn)?如果存在,求出的取值范圍,并求出該交點(diǎn)到直線的距離;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

 

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

B

C

A

A

C

D

B

D

C

C

1.B.因。

2..因

3.B. 因?yàn)?sub>的定義域?yàn)閇0,2],所以對(duì),。

4. 函數(shù)為增函數(shù)

5. ,…,

6.    

7.  .由題知,垂足的軌跡為以焦距為直徑的圓,則

,所以

8.  

9. .

10...函數(shù)

11..一天顯示的時(shí)間總共有種,和為23總共有4種,故所求概率為.

12..當(dāng)時(shí),顯然成立

當(dāng)時(shí),顯然不成立;當(dāng)顯然成立;

當(dāng)時(shí),則兩根為負(fù),結(jié)論成立

 

二、填空題:本大題共4小題,每小題4分,共16分。

13.        14..            15. 5        16. A、B、D

13.依題意

14.

15. 易求得到球心的距離分別為3、2,類(lèi)比平面內(nèi)圓的情形可知當(dāng)、與球心共線時(shí),取最大值5。

16., ∴對(duì)

的中點(diǎn),則, ∴對(duì)

設(shè),    則,而,∴錯(cuò)

,∴對(duì)

∴真命題的代號(hào)是

三、解答題:本大題共6小題,共74分。

17.解:(1)由

,           

于是=.          

(2)因?yàn)?sub>

所以          

      

的最大值為.      

 

18.解:(1)令A(yù)表示兩年后柑桔產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量這一事件

 

(2)令B表示兩年后柑桔產(chǎn)量超過(guò)災(zāi)前產(chǎn)量這一事件

 

19.(1)設(shè)的公差為的公比為,則為正整數(shù),

,      

依題意有

解得(舍去)      

(2) 

    

        

 

20.解 :(1)證明:依題設(shè),的中位線,所以

∥平面,所以。

的中點(diǎn),所以,

。              

因?yàn)?sub>,

所以⊥面,則,

因此⊥面。

(2)作,連。

因?yàn)?sub>⊥平面

根據(jù)三垂線定理知,,              

就是二面角的平面角。       

,則,則的中點(diǎn),則。

設(shè),由得,,解得,

中,,則,。

所以,故二面角。

 

解法二:(1)以直線分別為軸,建立空間直角坐標(biāo)系,

  

所以

所以         

所以平面           

,故:平面

 

(2)由已知設(shè)

共線得:存在

同理:

設(shè)是平面的一個(gè)法向量,

是平面的一個(gè)法量

              

所以二面角的大小為                 

21. 解:(1)因?yàn)?sub>

           

時(shí),根的左右的符號(hào)如下表所示

極小值

極大值

極小值

 

所以的遞增區(qū)間為        

的遞減區(qū)間為          

(2)由(1)得到,

                          

要使的圖像與直線恰有兩個(gè)交點(diǎn),只要, 

.                        

 

22.(1)證明:設(shè),

則直線的方程:       

即:

上,所以①   

又直線方程:

得:

所以     

同理,

所以直線的方程:   

將①代入上式得,即點(diǎn)在直線

所以三點(diǎn)共線                           

(2)解:由已知共線,所以 

為直徑的圓的方程:

所以(舍去),        

 

要使圓與拋物線有異于的交點(diǎn),則

所以存在,使以為直徑的圓與拋物線有異于的交點(diǎn) 


同步練習(xí)冊(cè)答案