A.(c.) B.(-c.) C. D.不存在 第Ⅱ卷 查看更多

 

題目列表(包括答案和解析)

如圖,圓O為單位圓,A(1,0),B(
3
2
,
1
2
)
,C(
2
2
2
2
)
,D(
1
2
,
3
2
)
,E(0,1),F(-
1
2
,
3
2
)
為圓O上的定點(diǎn),點(diǎn)M為圓O上的動(dòng)點(diǎn).M第一次由點(diǎn)A按逆時(shí)針?lè)较蜻\(yùn)動(dòng)到某定點(diǎn),所形成的角為α;M第二次由點(diǎn)A按逆時(shí)針?lè)较蜻\(yùn)動(dòng)到某定點(diǎn),所形成的角為β.
(Ⅰ) 當(dāng)點(diǎn)M第一次由點(diǎn)A按逆時(shí)針?lè)较蜻\(yùn)動(dòng)到定點(diǎn)C,第二次由點(diǎn)A按逆時(shí)針?lè)较蜻\(yùn)動(dòng)到定點(diǎn)D時(shí),求cos(α-β)的值;
(Ⅱ)在A、B、C、D、E、F中是否存在兩個(gè)點(diǎn),能使角α,β同時(shí)滿足α+2β=
2
,且tan
α
2
tanβ=3-2
3
.若不存在,說(shuō)明理由; 若存在,找出定點(diǎn)并證明.

查看答案和解析>>

已知橢圓C:+=1(a>b>0),⊙O:x2+y2=b2,點(diǎn)A、F分別是橢圓C的左頂點(diǎn)和左焦點(diǎn),點(diǎn)P是⊙O上的動(dòng)點(diǎn).
(1)若P(-1,),PA是⊙O的切線,求橢圓C的方程;
(2)若是一個(gè)常數(shù),求橢圓C的離心率;
(3)當(dāng)b=1時(shí),過(guò)原點(diǎn)且斜率為k的直線交橢圓C于D、E兩點(diǎn),其中點(diǎn)D在第一象限,它在x軸上的射影為點(diǎn)G,直線EG交橢圓C于另一點(diǎn)H,是否存實(shí)數(shù)a,使得對(duì)任意的k>0,都有DE⊥DH?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知橢圓C:+=1(a>b>0),⊙O:x2+y2=b2,點(diǎn)A、F分別是橢圓C的左頂點(diǎn)和左焦點(diǎn),點(diǎn)P是⊙O上的動(dòng)點(diǎn).
(1)若P(-1,),PA是⊙O的切線,求橢圓C的方程;
(2)若是一個(gè)常數(shù),求橢圓C的離心率;
(3)當(dāng)b=1時(shí),過(guò)原點(diǎn)且斜率為k的直線交橢圓C于D、E兩點(diǎn),其中點(diǎn)D在第一象限,它在x軸上的射影為點(diǎn)G,直線EG交橢圓C于另一點(diǎn)H,是否存實(shí)數(shù)a,使得對(duì)任意的k>0,都有DE⊥DH?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),⊙O:x2+y2=b2,點(diǎn)A、F分別是橢圓C的左頂點(diǎn)和左焦點(diǎn),點(diǎn)P是⊙O上的動(dòng)點(diǎn).
(1)若P(-1,
3
),PA是⊙O的切線,求橢圓C的方程;
(2)若
PA
PF
是一個(gè)常數(shù),求橢圓C的離心率;
(3)當(dāng)b=1時(shí),過(guò)原點(diǎn)且斜率為k的直線交橢圓C于D、E兩點(diǎn),其中點(diǎn)D在第一象限,它在x軸上的射影為點(diǎn)G,直線EG交橢圓C于另一點(diǎn)H,是否存實(shí)數(shù)a,使得對(duì)任意的k>0,都有DE⊥DH?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,圓O為單位圓,A(1,0),數(shù)學(xué)公式,數(shù)學(xué)公式,數(shù)學(xué)公式,E(0,1),數(shù)學(xué)公式為圓O上的定點(diǎn),點(diǎn)M為圓O上的動(dòng)點(diǎn).M第一次由點(diǎn)A按逆時(shí)針?lè)较蜻\(yùn)動(dòng)到某定點(diǎn),所形成的角為α;M第二次由點(diǎn)A按逆時(shí)針?lè)较蜻\(yùn)動(dòng)到某定點(diǎn),所形成的角為β.
(Ⅰ) 當(dāng)點(diǎn)M第一次由點(diǎn)A按逆時(shí)針?lè)较蜻\(yùn)動(dòng)到定點(diǎn)C,第二次由點(diǎn)A按逆時(shí)針?lè)较蜻\(yùn)動(dòng)到定點(diǎn)D時(shí),求cos(α-β)的值;
(Ⅱ)在A、B、C、D、E、F中是否存在兩個(gè)點(diǎn),能使角α,β同時(shí)滿足數(shù)學(xué)公式,且數(shù)學(xué)公式.若不存在,說(shuō)明理由; 若存在,找出定點(diǎn)并證明.

查看答案和解析>>

一、選擇題: B A B D A      B D C B D   B。

二、填空題: 13.高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。 14.-8   15.1  16.①②

 

三、解答題:

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。18.解:依題意,第四項(xiàng)指標(biāo)抽檢合格的概率為 高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。其它三項(xiàng)指標(biāo)抽檢合格的概率均為高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。 。   

   (1)若食品監(jiān)管部門對(duì)其四項(xiàng)質(zhì)量指標(biāo)依次進(jìn)行嚴(yán)格的檢測(cè),恰好在第三項(xiàng)指標(biāo)檢測(cè)結(jié)束時(shí),  能確定該食品不能上市的概率等于第一、第二項(xiàng)指標(biāo)中恰有一項(xiàng)不合格而且第三項(xiàng)指標(biāo)不合格的概率.

 高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

   (2)該品牌的食品能上市的概率等于四項(xiàng)指標(biāo)都含格或第一、第二、第三項(xiàng)指標(biāo)中僅有

一項(xiàng)不合格且第四項(xiàng)指標(biāo)合格的概率.

   高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。故二面角高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。的大小為高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

 

 

 

 

 

 

 

解法二:如圖,以高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。為原點(diǎn),建立空間直角坐標(biāo)系,使高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。軸,高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。、高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。分別在高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。軸、高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。軸上。

(1)由已知,高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。, 高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。, ∴高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,∴高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。 

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。21.解:(1)設(shè)直線高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。的方程為高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,聯(lián)立,得

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

由△高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。得,高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

 


同步練習(xí)冊(cè)答案