(2) 求點的坐標(其中用含的式子表示), 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系中,已知三點A(0,a),B(b,0),C(b,c),其中a,b,c滿足關系式|a-2|+(b-3)2=0,c=2b-a;
(1)求a,b,c的值.
(2)如果在第二象限內(nèi)有一點P(m,1),請用含m的式子表示四邊形ABOP的面積;若四邊形ABOP的面積與△ABC的面積相等,請求出點P的坐標;
附加題:
(3)若B,A兩點分別在x軸,y軸的正半軸上運動,設∠BAO的鄰補角的平分線和∠ABO的鄰補角的平分線相交于第一象限內(nèi)一點Q,那么,點A,B在運動的過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.
(4)是否存在一點N(n,-1),使AN+NC距離最短?如果有,請求出該點坐標,如果沒有,請說明理由.

查看答案和解析>>

在下面直角坐標系中,已知A(0,a),B(b,0),C(b,c)三點,其中a、b、c滿足關系式+(b-3)2=0,(c-4)2≤0.

(1)求a、b、c的值;
(2)如果在第二象限內(nèi)有一點P(m,),請用含m的式子表示四邊形ABOP的面積;
(3)在(2)的條件下,是否存在點P,使四邊形ABOP的面積與△ABC的面積相等?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

在下面直角坐標系中,已知A(0,a),B(b,0),C(b,c)三點,其中a、b、c滿足關系式+(b-3)2=0,(c-4)2≤0.

(1)求a、b、c的值;

(2)如果在第二象限內(nèi)有一點P(m,),請用含m的式子表示四邊形ABOP的面積;

(3)在(2)的條件下,是否存在點P,使四邊形ABOP的面積與△ABC的面積相等?若存在,求出點P的坐標,若不存在,請說明理由.

 

查看答案和解析>>

在平面直角坐標系中,已知三點A(0,a),B(b,0),C(b,c),其中a,b,c滿足關系式|a-2|+(b-3)2=0,c=2b-a;
(1)求a,b,c的值.
(2)如果在第二象限內(nèi)有一點P(m,1),請用含m的式子表示四邊形ABOP的面積;若四邊形ABOP的面積與△ABC的面積相等,請求出點P的坐標;
附加題:
(3)若B,A兩點分別在x軸,y軸的正半軸上運動,設∠BAO的鄰補角的平分線和∠ABO的鄰補角的平分線相交于第一象限內(nèi)一點Q,那么,點A,B在運動的過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.
(4)是否存在一點N(n,-1),使AN+NC距離最短?如果有,請求出該點坐標,如果沒有,請說明理由.

查看答案和解析>>

在平面直角坐標系中,已知點A(-2,0),點B(0,4),點E在OB上,且∠OAE=∠0BA.
(Ⅰ)如圖①,求點E的坐標;
(Ⅱ)如圖②,將△AEO沿x軸向右平移得到△A′E′O′,連接A′B、BE′.
①設AA′=m,其中0<m<2,試用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;
②當A′B+BE′取得最小值時,求點E′的坐標(直接寫出結果即可).

查看答案和解析>>


同步練習冊答案