18.如圖.在直角坐標系中.Rt△AOB的兩條直角邊OA.OB分別在x軸的負半軸.y軸的負半軸上.且OA=2.OB=1.將Rt△AOB繞點O按順時針方向旋轉(zhuǎn)90º.再把所得的像沿x軸正方向平移1個單位.得△CDO.(1)寫出點A.C的坐標,(2)求點A和點C之間的距離. 查看更多

 

題目列表(包括答案和解析)

如圖,在直角坐標系中,以點M(3,0)為圓心,以6為半徑的圓分別交x軸的正半軸于點A,交x軸的負半軸交于點B,交y軸的正半軸于點C,過點C的直線交x軸的負半軸于點D(-9,0)
(1)求A,C兩點的坐標;
(2)求證:直線CD是⊙M的切線;
(3)若拋物線y=x2+bx+c經(jīng)過M,A兩點,求此拋物線的解析式;
(4)連接AC,若(3)中拋物線的對稱軸分別與直線CD交于點E,與AC交于點F.如果點P是拋物線上的動點,是否存在這樣的點P,使得S△PAM:S△CEF=
3
:3?若存在,請求出此時點P的坐精英家教網(wǎng)標;若不存在,請說明理由.(注意:本題中的結(jié)果均保留根號)

查看答案和解析>>

如圖,在直角坐標系中,以點M(3,0)為圓心,以6為半徑的圓分別交x軸的正半軸于點A,交x軸的負半軸交于點B,交y軸的正半軸于點C,過點C的直線交x軸的負半軸于點D(-9,0)
(1)求A,C兩點的坐標;
(2)求證:直線CD是⊙M的切線;
(3)若拋物線y=x2+bx+c經(jīng)過M,A兩點,求此拋物線的解析式;
(4)連接AC,若(3)中拋物線的對稱軸分別與直線CD交于點E,與AC交于點F.如果點P是拋物線上的動點,是否存在這樣的點P,使得S△PAM:S△CEF=數(shù)學公式:3?若存在,請求出此時點P的坐標;若不存在,請說明理由.(注意:本題中的結(jié)果均保留根號)

查看答案和解析>>

如圖,在直角坐標系中,以點M(3,0)為圓心,以6為半徑的圓分別交x軸的正半軸于點A,交x軸的負半軸交于點B,交y軸的正半軸于點C ,過點C的直線交x軸的負半軸于點D(-9,0)
(1) 求A、C兩點的坐標;
(2) 求證:直線CD是⊙M的切線;
(3) 若拋物線y=x2+bx+c經(jīng)過M、A兩點,求此拋物線的解析式;
(4) 連接AC,若(3)中拋物線的對稱軸分別與直線CD交于點E,與AC交于點F。如果點P是拋物線上的動點,是否存在這樣的點P,使得S△PAM:S△CEF=:3,若存在,請求出此時點P的坐標;若不存在,請說明理由。 (本題中的結(jié)果均保留根號)

查看答案和解析>>

如圖,在直角坐標系中,是原點,三點的坐標分別,四邊形是梯形,點同時從原點出發(fā),分別作勻速運動,其中點沿向終點運動,速度為每秒個單位,點沿向終點運動,當這兩點有一點到達自己的終點時,另一點也停止運動.

(1)求直線的解析式.

(2)設從出發(fā)起,運動了秒.如果點的速度為每秒個單位,試寫出點的坐標,并寫出此時 的取值范圍.

(3)設從出發(fā)起,運動了秒.當,兩點運動的路程之和恰好等于梯形的周長的一半,這時,直線能否把梯形的面積也分成相等的兩部分,如有可能,請求出的值;如不可能,請說明理由.

【解析】(1)根據(jù)待定系數(shù)法就可以求出直線OC的解析式(2)本題應分Q在OC上,和在CB上兩種情況進行討論.即0≤t≤5和5<t≤10兩種情況(3)P、Q兩點運動的路程之和可以用t表示出來,梯形OABC的周長就可以求得.當P、Q兩點運動的路程之和恰好等于梯形OABC的周長的一半,就可以得到一個關于t的方程,可以解出t的值.梯形OABC的面積可以求出,梯形OCQP的面積可以用t表示出來.把t代入可以進行檢驗

 

查看答案和解析>>

如圖,在直角坐標系中,以點M(3,0)為圓心,以6為半徑的圓分別交x軸的正半軸于點A,交x軸的負半軸交于點B,交y軸的正半軸于點C,過點C的直線交x軸的負半軸于點D(-9,0)
(1)求A,C兩點的坐標;
(2)求證:直線CD是⊙M的切線;
(3)若拋物線y=x2+bx+c經(jīng)過M,A兩點,求此拋物線的解析式;
(4)連接AC,若(3)中拋物線的對稱軸分別與直線CD交于點E,與AC交于點F.如果點P是拋物線上的動點,是否存在這樣的點P,使得S△PAM:S△CEF=:3?若存在,請求出此時點P的坐標;若不存在,請說明理由.(注意:本題中的結(jié)果均保留根號)

查看答案和解析>>


同步練習冊答案