(3)若點(diǎn)P是拋物線上的一個動點(diǎn).那么點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)Q是否在拋物線上.請說明理由. 查看更多

 

題目列表(包括答案和解析)

拋物線y=ax2-2ax+b(a>0)交x軸于A,B兩點(diǎn),交y軸于C;且滿足OA•OB-OC=0,若C(0,-3)
(1)求這個拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,將此拋物線頂點(diǎn)沿直線y=-x-3平移,平移后的拋物線與x軸交于A′、B′兩點(diǎn)  若2≤A′B′≤6,試求出點(diǎn)M的橫坐標(biāo)的取值范圍;
(3)過點(diǎn)C的直線y=
3
4t
x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個動點(diǎn),過P作PH⊥OB于點(diǎn)H.若PB=
2
t,且0<t<1.依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

拋物線y=ax2-2ax+b(a>0)交x軸于A,B兩點(diǎn),交y軸于C;且滿足OA•OB-OC=0,若C(0,-3)
(1)求這個拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,將此拋物線頂點(diǎn)沿直線y=-x-3平移,平移后的拋物線與x軸交于A′、B′兩點(diǎn) 若2≤A′B′≤6,試求出點(diǎn)M的橫坐標(biāo)的取值范圍;
(3)過點(diǎn)C的直線y=數(shù)學(xué)公式x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個動點(diǎn),過P作PH⊥OB于點(diǎn)H.若PB=數(shù)學(xué)公式t,且0<t<1.依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

拋物線y=ax2-2ax+b(a>0)交x軸于A,B兩點(diǎn),交y軸于C;且滿足OA•OB-OC=0,若C(0,-3)
(1)求這個拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,將此拋物線頂點(diǎn)沿直線y=-x-3平移,平移后的拋物線與x軸交于A′、B′兩點(diǎn)  若2≤A′B′≤6,試求出點(diǎn)M的橫坐標(biāo)的取值范圍;
(3)過點(diǎn)C的直線y=x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個動點(diǎn),過P作PH⊥OB于點(diǎn)H.若PB=t,且0<t<1.依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

已知拋物線y=x2+bx+c與直線y=x+1有兩個交點(diǎn)A、B.
(1)當(dāng)AB的中點(diǎn)落在y軸時,求c的取值范圍;
(2)當(dāng)AB=2
2
,求c的最小值,并寫出c取最小值時拋物線的解析式;
(3)設(shè)點(diǎn)P(t,T)在AB之間的一段拋物線上運(yùn)動,S(t)表示△PAB的面積.
①當(dāng)AB=2
2
,且拋物線與直線的一個交點(diǎn)在y軸時,求S(t)的最大值,以及此時點(diǎn)P的坐標(biāo);
②當(dāng)AB=m(正常數(shù))時,S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此時精英家教網(wǎng)點(diǎn)P的坐標(biāo)(t,T)滿足的關(guān)系,若不存在說明理由.

查看答案和解析>>

精英家教網(wǎng)已知拋物線y=-x2+mx-n的對稱軸為x=-2,且與x軸只有一個交點(diǎn).
(1)求m,n的值;
(2)把拋物線沿x軸翻折,再向右平移2個單位,向下平移1個單位,得到新的拋物線C,求新拋物線C的解析式;
(3)已知P是y軸上的一個動點(diǎn),定點(diǎn)B的坐標(biāo)為(0,1),問:在拋物線C上是否存在點(diǎn)D,使△BPD為等邊三角形?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案