如圖.將邊長為1的正方形網格放在直角坐標系中.以O點為位似中心在y軸的左側將四邊形OABC放大到兩倍.請畫出放大后的四邊形. 查看更多

 

題目列表(包括答案和解析)

如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A,點B,點C均落在格點上.
(Ⅰ)計算AC2+BC2的值等于
 

(Ⅱ)請在如圖所示的網格中,用無刻度的直尺,畫出一個以AB為一邊的矩形,使該矩形的面積等于AC2+BC2,并簡要說明畫圖方法(不要求證明)
 

查看答案和解析>>

如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A、B、C均落在格點上.

(1)△ABC的面積等于    

(2)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請你在如圖所示的網格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明)    

 

查看答案和解析>>

如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉,在旋轉過程中,當下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關系.
(1)實驗與操作:
如圖②,如果上面三角板的一條直角邊旋轉到CM的位置時,它的斜邊恰好旋轉到CN的位置,請在網格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
我們來證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數量關系,為什么?
(3)拓廣與運用:
如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

查看答案和解析>>

如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A、B、C均落在格點上.
(Ⅰ)△ABC的面積等于________;
(Ⅱ)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請你在如圖所示的網格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明)________.

查看答案和解析>>

如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A、B、C均落在格點上.
(Ⅰ)△ABC的面積等于    ;
(Ⅱ)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請你在如圖所示的網格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明)   

查看答案和解析>>


同步練習冊答案