(1)求證:與的面積相等, 查看更多

 

題目列表(包括答案和解析)

求證:

(1)三角形的面積等于兩邊的長(zhǎng)與其夾角的正弦值的乘積的一半;

(2)平行四邊形的面積等于相鄰兩邊的長(zhǎng)與夾角的正弦值的乘積.

查看答案和解析>>

數(shù)學(xué)活動(dòng)-求重疊部分的面積

(1)問(wèn)題情境:如圖①,將頂角為120°的等腰三角形紙片(紙片足夠大)的頂點(diǎn)P與等邊△ABC的內(nèi)心O重合,已知OA=2,則圖中重疊部分△PAB的面積為
 

(2)探究1:在(1)的條件下,將紙片繞P點(diǎn)旋轉(zhuǎn)至如圖②所示位置,紙片兩邊分別與AC,AB交于點(diǎn)E,F(xiàn),圖②中重疊部分的面積與圖①重疊部分的面積是否相等?如果相等,請(qǐng)給予證明;如果不相等,請(qǐng)說(shuō)明理由.
(3)探究2:如圖③,若∠CAB=α(0°<α<90°),AD為∠CAB的角平分線,點(diǎn)P在射線AD上,且AP=2,以P為頂點(diǎn)的等腰三角形紙片(紙片足夠大)與∠CAB的兩邊AC,AB分別交于點(diǎn)E、F,∠EPF=180°-α,求重疊部分的面積.(用α或
α2
的三角函數(shù)值表示)

查看答案和解析>>

數(shù)學(xué)活動(dòng)﹣求重疊部分的面積

(1)問(wèn)題情境:如圖①,將頂角為120°的等腰三角形紙片(紙片足夠大)的頂點(diǎn)P與等邊△ABC的內(nèi)心O重合,已知OA=2,則圖中重疊部分△PAB的面積為      
(2)探究1:在(1)的條件下,將紙片繞P點(diǎn)旋轉(zhuǎn)至如圖②所示位置,紙片兩邊分別與AC,AB交于點(diǎn)E,F(xiàn),圖②中重疊部分的面積與圖①重疊部分的面積是否相等?如果相等,請(qǐng)給予證明;如果不相等,請(qǐng)說(shuō)明理由.
(3)探究2:如圖③,若∠CAB=α(0°<α<90°),AD為∠CAB的角平分線,點(diǎn)P在射線AD上,且AP=2,以P為頂點(diǎn)的等腰三角形紙片(紙片足夠大)與∠CAB的兩邊AC,AB分別交于點(diǎn)E、F,∠EPF=180°﹣α,求重疊部分的面積.(用α或的三角函數(shù)值表示)

查看答案和解析>>

某課題研究小組就圖形面積問(wèn)題進(jìn)行專(zhuān)題研究,他們發(fā)現(xiàn)如下結(jié)論:
(1)有一條邊對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于這條邊上的對(duì)應(yīng)高之比;
(2)有一個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形面積之比等于夾這個(gè)角的兩邊乘積之比;

現(xiàn)請(qǐng)你繼續(xù)對(duì)下面問(wèn)題進(jìn)行探究,探究過(guò)程可直接應(yīng)用上述結(jié)論.(S表示面積)
精英家教網(wǎng)
問(wèn)題1:如圖1,現(xiàn)有一塊三角形紙板ABC,P1,P2三等分邊AB,R1,R2三等分邊AC.經(jīng)探究知S四邊形P1P2R2R1=
13
S△ABC,請(qǐng)證明.
問(wèn)題2:若有另一塊三角形紙板,可將其與問(wèn)題1中的拼合成四邊形ABCD,如圖2,Q1,Q2三等分邊DC.請(qǐng)?zhí)骄?span id="5icoirb" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">S四邊形P1Q1Q2P2與S四邊形ABCD之間的數(shù)量關(guān)系.
問(wèn)題3:如圖3,P1,P2,P3,P4五等分邊AB,Q1,Q2,Q3,Q4五等分邊DC.若S四邊形ABCD=1,求S四邊形P2Q2Q3P3
問(wèn)題4:如圖4,P1,P2,P3四等分邊AB,Q1,Q2,Q3四等分邊DC,P1Q1,P2Q2,P3Q3將四邊形ABCD分成四個(gè)部分,面積分別為S1,S2,S3,S4.請(qǐng)直接寫(xiě)出含有S1,S2,S3,S4的一個(gè)等式.

查看答案和解析>>

如圖,已知拋物線
(1)求證:無(wú)論m取什么實(shí)數(shù),這條拋物線與x軸一定有交點(diǎn)。
(2)設(shè)這條拋物線與x軸的正半軸交于兩點(diǎn)(設(shè)A點(diǎn)在B點(diǎn)的左側(cè)),當(dāng)線段AB長(zhǎng)為3時(shí),求這條拋物線的解析式,以及A、B兩點(diǎn)的坐標(biāo)。
(3)設(shè)(2)中的拋物線與y軸交于點(diǎn)C,過(guò)A、B兩點(diǎn)分別作兩條直線與x軸垂直,又過(guò)點(diǎn)C作直線l,l與這兩條直線依次交于x軸上方的E、F兩點(diǎn),如果梯形ABFE的面積等于9,求直線l的解析式。
(4)設(shè)線段AB上有一個(gè)動(dòng)點(diǎn)P,P從A點(diǎn)出發(fā)向B點(diǎn)移動(dòng)(但不與B重合),過(guò)P點(diǎn)作PM垂直x軸,交(2)中的拋物線于點(diǎn)M。設(shè),問(wèn):是否存在這樣的t值,使與以P、M、B為頂點(diǎn)的直角三角形相似?如果存在,求出t的值;如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>


同步練習(xí)冊(cè)答案