題目列表(包括答案和解析)
(本小題滿分12分)
甲乙二人用4張撲克牌(分別是紅2, 紅3, 紅4, 方4)玩游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
(Ⅰ)設分別表示甲、乙抽到的牌的數(shù)字,寫出甲乙二人抽到的牌的所有情況.
(Ⅱ)若甲抽到紅桃3,則乙抽出的牌的牌面數(shù)字比3大的概率是多少?
(Ⅲ)甲乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝,反之,則乙勝.你認為此游戲是否公平,說明你的理由.
(本題滿分12分)
今天你低碳了嗎?近來,國內網站流行一種名為“碳排放計算器”的軟件,人們可以由此計算出自己每天的碳排放量。例如:家居用電的碳排放量(千克) = 耗電度數(shù)0.785,汽車的碳排放量(千克)=油耗公升數(shù)0.785等。某班同學利用寒假在兩個小區(qū)逐戶進行了一次生活習慣是否符合低碳觀念的調查。若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”。這二族人數(shù)占各自小區(qū)總人數(shù)的比例P數(shù)據(jù)如下:
(I)如果甲、乙來自A小區(qū),丙、丁來自B小區(qū),求這4人中恰有2人是低碳族的概率;
(II)A小區(qū)經過大力宣傳,每周非低碳族中有20%的人加入到低碳族的行列。如果2周后隨機地從A小區(qū)中任選25人,記表示25個人中低碳族人數(shù),求E。
(本小題滿分12分)
某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓練對提高‘數(shù)學應用題’得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規(guī)教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數(shù)學應用題上的得分率基本一致,試驗結束后,統(tǒng)計幾次數(shù)學應用題測試的平均成績(均取整數(shù))如下表所示:
| 60分以下 | 61-70分 | 71-80分 | 81-90分 | 91-100分 |
甲班(人數(shù)) | 3 | 6 | 11 | 18 | 12 |
乙班(人數(shù)) | 4 | 8 | 13 | 15 | 10 |
| 優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 合計 |
甲班 | | | |
乙班 | | | |
合計 | | | |
(2009寧夏海南卷理)(本小題滿分12分)
某工廠有工人1000名, 其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產能力(此處生產能力指一天加工的零件數(shù))。
(I)求甲、乙兩工人都被抽到的概率,其中甲為A類工人,乙為B類工人;
(II)從A類工人中的抽查結果和從B類工人中的抽插結果分別如下表1和表2.
表1:
生產能力分組 | |||||
人數(shù) | 4 | 8 | 5 | 3 |
表2:
生產能力分組 | ||||
人數(shù) | 6 | y | 36 | 18 |
(i)先確定x,y,再在答題紙上完成下列頻率分布直方圖。就生產能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結論)
(ii)分別估計A類工人和B類工人生產能力的平均數(shù),并估計該工廠工人的生產能力的平均數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
一、選擇題(本大題共12小題,每小題5分,共60分)
ACBAC ACDAD BC
二、填空題(本大題共4小題,每小題4分,共16分)
13. 14.0 15.300 16.4
三、解答題(本大題共6小題,共74分。解答應寫出文字說明,證明過程或演算步驟)
17.解:(1)
周期;
,
解得單調遞增區(qū)間為
(2),所以,
所以的值域為[2,3]
而,所以,即
18.解:(1)
當時,
兩式相減得
即
當時,數(shù)列是等比數(shù)列
要使數(shù)列是等比數(shù)列,
當且僅當,即
從而
(2)設數(shù)列的公差為
由得
故可設
又
由題意知
解得
又等差數(shù)列的前項和有最大值,
從而
19.解:(1)甲乙二人抽到的牌的所有情況(方片4用
(2,3)、(2,4)、(2,
(4,2)、(4,3)、(4,
共12種不同情況
(沒有寫全面時:只寫出1個不給分,2―4個給1分,5―8個給2分,9―11個給3分)
(2)甲抽到3,乙抽到的牌只能是2,4,
因此乙抽到的牌的數(shù)字大于3的概率為
(3)由甲抽到的牌比乙大的有
(3,2)、(4,2)、(4,3)、(
甲勝的概率,乙獲勝的概率為
此游戲不公平。
20.證明:由多面體的三視圖知,四棱錐的底面是長邊為2的正方形,側面是等腰三角形,,
且平面平面
(1)連結則是的中點,
在中,,
且平面平面,
平面
(2)因為平面平面,
平面平面,
又,所以,平面,
又平面,
所以 平面平面
(3)由三視圖知點到平面的距離為1,
則
21.解:(1),即,
的兩根為
有極大值點,極小值點
此時在上是減函數(shù),在上是增函數(shù)。
在上的最小值是-18,最大值是-6
(2)
當時,是增函數(shù),其最小值為
時也符合題意,
22.解:(1)由知是的中點,
設、兩點的坐標分別為
由 得:
點的坐標為
又點的直線上:
(2)由(1)知,不妨設橢圓的一個焦點坐標為,設關于直線
的對稱點為,
則有 解得:
由已知, ,
。所求的橢圓的方程為
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com