⑶坐標(biāo)平面內(nèi)是否存在點.使得以點M和⑵中拋物線上的三點A.B.C為頂點的四邊形是平行四邊形?若存在.請求出點的坐標(biāo),若不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

平面直角坐標(biāo)系內(nèi)有兩條直線l1、l2,直線l1的解析式為y=-
2
3
x+1,如果將坐標(biāo)紙折疊,使直線l1與l2重合,此時點(-2,0)與點(0,2)也重合.
(1)求直線l2的解析式;
(2)設(shè)直線l1與l2相交于點M,問:是否存在這樣的直線l:y=x+t,使得如果將坐標(biāo)紙沿直線l折疊,點M恰好落在x軸上若存在,求出直線l的解析式;若不存在,請說明理由;
(3)設(shè)直線l2與x軸的交點為A,與y軸的交點為B,以點C(0,
2
3
)為圓心,CA的長為半徑作圓,過點B任作一條直線(不與y軸重合),與⊙C相交于D、E兩點(點D在點E的下方)
①在如圖所示的直角坐標(biāo)系中畫出圖形;
②設(shè)OD=x,△BOD的面積為S1,△BEC的面積為S2,
S1
S2
=y
,求y與x之間的函數(shù)關(guān)系式精英家教網(wǎng),并寫出自變量x的取值范圍.

查看答案和解析>>

平面直角坐標(biāo)系內(nèi)有兩條直線l1、l2,直線l1的解析式為y=-
2
3
x+1,如果將坐標(biāo)紙折疊,使直線l1與l2重合,此時點(-2,0)與點(0,2)也重合.
(1)求直線l2的解析式;
(2)設(shè)直線l1與l2相交于點M,問:是否存在這樣的直線l:y=x+t,使得如果將坐標(biāo)紙沿直線l折疊,點M恰好落在x軸上若存在,求出直線l的解析式;若不存在,請說明理由;
(3)設(shè)直線l2與x軸的交點為A,與y軸的交點為B,以點C(0,
2
3
)為圓心,CA的長為半徑作圓,過點B任作一條直線(不與y軸重合),與⊙C相交于D、E兩點(點D在點E的下方)
①在如圖所示的直角坐標(biāo)系中畫出圖形;
②設(shè)OD=x,△BOD的面積為S1,△BEC的面積為S2,
S1
S2
=y
,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

已知:在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與x軸交于點A,拋物線經(jīng)過O、A兩點。

 (1)試用含a的代數(shù)式表示b;

(2)設(shè)拋物線的頂點為D,以D為圓心,DA為半徑的圓被x軸分為劣弧和優(yōu)弧兩部分。若將劣弧沿x軸翻折,翻折后的劣弧落在⊙D內(nèi),它所在的圓恰與OD相切,求⊙D半徑的長及拋物線的解析式;

(3)設(shè)點B是滿足(2)中條件的優(yōu)弧上的一個動點,拋物線在x軸上方的部分上是否存在這樣的點P,使得?若存在,求出點P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

已知:在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與x軸交于點A,拋物線經(jīng)過O、A兩點。

(1)試用含a的代數(shù)式表示b;

(2)設(shè)拋物線的頂點為D,以D為圓心,DA為半徑的圓被x軸分為劣弧和優(yōu)弧兩部分。若將劣弧沿x軸翻折,翻折后的劣弧落在⊙D內(nèi),它所在的圓恰與OD相切,求⊙D半徑的長及拋物線的解析式;

(3)設(shè)點B是滿足(2)中條件的優(yōu)弧上的一個動點,拋物線在x軸上方的部分上是否存在這樣的點P,使得?若存在,求出點P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

已知:在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與x軸交于點A,拋物線經(jīng)過O、A兩點。

  (1)試用含a的代數(shù)式表示b;

  (2)設(shè)拋物線的頂點為D,以D為圓心,DA為半徑的圓被x軸分為劣弧和優(yōu)弧兩部分。若將劣弧沿x軸翻折,翻折后的劣弧落在⊙D內(nèi),它所在的圓恰與OD相切,求⊙D半徑的長及拋物線的解析式;

  (3)設(shè)點B是滿足(2)中條件的優(yōu)弧上的一個動點,拋物線在x軸上方的部分上是否存在這樣的點P,使得?若存在,求出點P的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>


同步練習(xí)冊答案