中的結(jié)論.寫(xiě)出三者之間的關(guān)系表達(dá)式. 查看更多

 

題目列表(包括答案和解析)

如圖①,已知△ABC中,AB=AC,點(diǎn)P是BC上的一點(diǎn),PN⊥AC于點(diǎn)N,PM⊥AB于點(diǎn)M,CG⊥AB于點(diǎn)G,則CG=PM+PN.
(1)如圖②,若點(diǎn)P在BC的延長(zhǎng)線上,則PM、PN、CG三者是否還有上述關(guān)系,若有,請(qǐng)說(shuō)明理由,若沒(méi)有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(2)如圖③,AC是正方形ABCD的對(duì)角線,AE=AB,點(diǎn)P是BE上任一點(diǎn),PN⊥AB于點(diǎn)N,PM⊥AC于點(diǎn)M,猜想PM、PN、AC有什么關(guān)系;(直接寫(xiě)出結(jié)論)
(3)觀察圖①、②、③的特性,請(qǐng)你根據(jù)這一特性構(gòu)造一個(gè)圖形,使它仍然具有PM、PN、CG這樣的線段,并滿足圖①或圖②的結(jié)論,寫(xiě)出相關(guān)題設(shè)的條件和結(jié)論
精英家教網(wǎng)

查看答案和解析>>

如圖①,已知△ABC中,AB=AC,點(diǎn)P是BC上的一點(diǎn),PN⊥AC于點(diǎn)N,PM⊥AB于點(diǎn)M,CG⊥AB于點(diǎn)G,則CG=PM+PN.
(1)如圖②,若點(diǎn)P在BC的延長(zhǎng)線上,則PM、PN、CG三者是否還有上述關(guān)系,若有,請(qǐng)說(shuō)明理由,若沒(méi)有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(2)如圖③,AC是正方形ABCD的對(duì)角線,AE=AB,點(diǎn)P是BE上任一點(diǎn),PN⊥AB于點(diǎn)N,PM⊥AC于點(diǎn)M,猜想PM、PN、AC有什么關(guān)系;(直接寫(xiě)出結(jié)論)
(3)觀察圖①、②、③的特性,請(qǐng)你根據(jù)這一特性構(gòu)造一個(gè)圖形,使它仍然具有PM、PN、CG這樣的線段,并滿足圖①或圖②的結(jié)論,寫(xiě)出相關(guān)題設(shè)的條件和結(jié)論

查看答案和解析>>

如圖①,已知△ABC中,AB=AC,點(diǎn)P是BC上的一點(diǎn),PN⊥AC于點(diǎn)N,PM⊥AB于點(diǎn)M,CG⊥AB于點(diǎn)G,則CG=PM+PN.
(1)如圖②,若點(diǎn)P在BC的延長(zhǎng)線上,則PM、PN、CG三者是否還有上述關(guān)系,若有,請(qǐng)說(shuō)明理由,若沒(méi)有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(2)如圖③,AC是正方形ABCD的對(duì)角線,AE=AB,點(diǎn)P是BE上任一點(diǎn),PN⊥AB于點(diǎn)N,PM⊥AC于點(diǎn)M,猜想PM、PN、AC有什么關(guān)系;(直接寫(xiě)出結(jié)論)
(3)觀察圖①、②、③的特性,請(qǐng)你根據(jù)這一特性構(gòu)造一個(gè)圖形,使它仍然具有PM、PN、CG這樣的線段,并滿足圖①或圖②的結(jié)論,寫(xiě)出相關(guān)題設(shè)的條件和結(jié)論

查看答案和解析>>

如圖①,已知△ABC中,AB=AC,點(diǎn)P是BC上的一點(diǎn),PN⊥AC于點(diǎn)N,PM⊥AB于點(diǎn)M,CG⊥AB于點(diǎn)G,則CG=PM+PN.
(1)如圖②,若點(diǎn)P在BC的延長(zhǎng)線上,則PM、PN、CG三者是否還有上述關(guān)系,若有,請(qǐng)說(shuō)明理由,若沒(méi)有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(2)如圖③,AC是正方形ABCD的對(duì)角線,AE=AB,點(diǎn)P是BE上任一點(diǎn),PN⊥AB于點(diǎn)N,PM⊥AC于點(diǎn)M,猜想PM、PN、AC有什么關(guān)系;(直接寫(xiě)出結(jié)論)
(3)觀察圖①、②、③的特性,請(qǐng)你根據(jù)這一特性構(gòu)造一個(gè)圖形,使它仍然具有PM、PN、CG這樣的線段,并滿足圖①或圖②的結(jié)論,寫(xiě)出相關(guān)題設(shè)的條件和結(jié)論

查看答案和解析>>

如圖①,已知△ABC中,AB=AC,點(diǎn)P是BC上的一點(diǎn),PN⊥AC于點(diǎn)N,PM⊥AB于點(diǎn)M,CG⊥AB于點(diǎn)G,則CG=PM+PN.
(1)如圖②,若點(diǎn)P在BC的延長(zhǎng)線上,則PM、PN、CG三者是否還有上述關(guān)系,若有,請(qǐng)說(shuō)明理由,若沒(méi)有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(2)如圖③,AC是正方形ABCD的對(duì)角線,AE=AB,點(diǎn)P是BE上任一點(diǎn),PN⊥AB于點(diǎn)N,PM⊥AC于點(diǎn)M,猜想PM、PN、AC有什么關(guān)系;(直接寫(xiě)出結(jié)論)
(3)觀察圖①、②、③的特性,請(qǐng)你根據(jù)這一特性構(gòu)造一個(gè)圖形,使它仍然具有PM、PN、CG這樣的線段,并滿足圖①或圖②的結(jié)論,寫(xiě)出相關(guān)題設(shè)的條件和結(jié)論

查看答案和解析>>


同步練習(xí)冊(cè)答案