如圖所示.已知正四棱柱ABCD-A1B1C1D1.點(diǎn)E在棱D1D上.截面EAC∥D1B.且面EAC與底面ABCD所成的角為450.AB=a. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖所示,已知圓

 
為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿

的軌跡為曲線E.

(1)求曲線E的方程;(II)若過(guò)定點(diǎn)F(0,2)

的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),

且滿足,求的取值范圍.

查看答案和解析>>

(本小題滿分12分)

如圖所示,已知S是正三角形ABC所在平面外的一點(diǎn),且SA=SB=SC,SG為△SAB上的高,D、E、F分別是AC、BC、SC的中點(diǎn),試判斷SG與平面DEF的位置關(guān)系,并給予證明.

 

查看答案和解析>>

(本小題滿分12分)如圖所示,已知六棱錐的底面是正六邊形,平面,的中點(diǎn)。

(Ⅰ)求證:平面//平面

(Ⅱ)設(shè),當(dāng)二面角的大小為時(shí),求的值。

 

查看答案和解析>>

(本小題滿分12分)如圖所示,已知中,AB=2OB=4,D為AB的中點(diǎn),若繞直線AO旋轉(zhuǎn)而成的,記二面角B—AO—C的大小為(I)若,求證:平面平面AOB;(II)若時(shí),求二面角C—OD—B的余弦值的最小值。

 

 

 

 

 

 

查看答案和解析>>

(本小題滿分12分)如圖所示,已知A、B、C是橢圓上三點(diǎn),其中點(diǎn)A的坐標(biāo)為,BC過(guò)橢圓的中心O,且

   (Ⅰ)求點(diǎn)C的坐標(biāo)及橢圓E的方程;

   (Ⅱ)若橢圓E上存在兩點(diǎn)P, Q,使得的平分線總垂直于z軸,試判斷向量是否共線,并給出證明.

                       

 

查看答案和解析>>

 

一、DCABB   DDCBC   AB

二、13.  192    14.   640     15.   4     16.   

17.

(1)     …5分

(2)由已知及(1)知     

學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)(Zxxk.Com)正弦定理得:

   ……………………10分

18.由題設(shè)及等比數(shù)列的性質(zhì)得 

又                 ②

由①②得  或            …………………4分

    或                     …………………6分

                      …………………8分

當(dāng)時(shí),        …………………10分

當(dāng)時(shí),………………12分

19.略(見課本B例1)

20.解:

(1)在正四棱柱中,因?yàn)?/p>

所以           

又             

連接于點(diǎn),連接,則,所以

所以是由截面與底面所成二面角的平面角,即

學(xué)科網(wǎng)(Zxxk.Com)

所以                 .....................4分

(2)由題設(shè)知是正四棱柱.

因?yàn)?nbsp;                 

所以                   

又                     

所以是異面直線之間的距離。

因?yàn)?sub>,而是截面與平面的交線,

所以                     

                   

即異面直線之間的距離為

(3)由題知

                        

因?yàn)?nbsp;                   

所以是三棱錐的高,

在正方形中,分別是的中點(diǎn),則

                             

所以                    

即三棱錐的體積是.

21.(1)解:,由此得切線的方程為

         ………………………4分

(2)切線方程令,得

當(dāng)且僅當(dāng)時(shí)等號(hào)成立!9分

②若,則又由

                   ………………………12分

22.(1)由題可得,設(shè)  

 

  

   又

    點(diǎn)P的坐標(biāo)為   ……………………3分

 

(2)由題意知,量直線的斜率必存在,設(shè)PB的斜率為

則PB的直線方程為:由  得

,顯然1是該方程的根

,依題意設(shè)故可得A點(diǎn)的橫坐標(biāo)

 

                   ……………………7分

(3)設(shè)AB的方程為,帶入并整理得

               

                  

   …………………(

設(shè)

                 

點(diǎn)P到直線AB的距離

當(dāng)且僅當(dāng),即時(shí)取“=”號(hào)(滿足條件

的面積的最大值為2                      ………………………12分

 

 

 

 


同步練習(xí)冊(cè)答案