26.如下圖.在等腰梯形ABCD中.AD∥BC.AB=DC=5.AD=6.BC=12.動點P從D點出發(fā)沿DC以每秒1個單位的速度向終點C運動.動點Q從C點出發(fā)沿CB以每秒2個單位的速度向B點運動.兩點同時出發(fā).當(dāng)P點到達(dá)C點時.Q點隨之停止運動. 查看更多

 

題目列表(包括答案和解析)

(本題12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;對角線相交于O點,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn)。

(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想DE與BF的數(shù)量關(guān)系,并加以證明。

(2)在(1)問條件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。

(3)當(dāng)三角板的一邊CF與梯形對角線AC重合時,作DH⊥PE于H,如圖2,若OF=時,求PE及DH的長。

 

 

 

 

 

查看答案和解析>>

(本題12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;對角線相交于O點,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn)。

(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想DE與BF的數(shù)量關(guān)系,并加以證明。
(2)在(1)問條件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。
(3)當(dāng)三角板的一邊CF與梯形對角線AC重合時,作DH⊥PE于H,如圖2,若OF=時,求PE及DH的長。

查看答案和解析>>

(本題12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;對角線相交于O點,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn)。

(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想DE與BF的數(shù)量關(guān)系,并加以證明。
(2)在(1)問條件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。
(3)當(dāng)三角板的一邊CF與梯形對角線AC重合時,作DH⊥PE于H,如圖2,若OF=時,求PE及DH的長。

查看答案和解析>>

(本題12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;對角線相交于O點,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn)。

(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想DE與BF的數(shù)量關(guān)系,并加以證明。

(2)在(1)問條件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。

(3)當(dāng)三角板的一邊CF與梯形對角線AC重合時,作DH⊥PE于H,如圖2,若OF=時,求PE及DH的長。

 

 

 

 

 

查看答案和解析>>

(本題12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;對角線相交于O點,等腰直角三角板的直角頂點落在梯形的頂點C上,使三角板繞點C旋轉(zhuǎn)。

(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想DE與BF的數(shù)量關(guān)系,并加以證明。
(2)在(1)問條件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。
(3)當(dāng)三角板的一邊CF與梯形對角線AC重合時,作DH⊥PE于H,如圖2,若OF=時,求PE及DH的長。

查看答案和解析>>


同步練習(xí)冊答案