綜合實踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點B分別與點A,A
1,A
2,…,D重合,然后用筆分別描出每條折痕與對應(yīng)條格所在直線的交點,用平滑的曲線順次連接各交點,得到一條曲線.
探索
如圖2,在平面直角坐標(biāo)系xOy中,將長方形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點B落在邊AD上的E處,過點E作EQ⊥BC,垂足為Q,交直線MN于點P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設(shè)點P坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當(dāng)點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的
,若存在,寫出點K的坐標(biāo);若不存在,請說明理由.