如圖.AB∥CD.直線分別與AB.CD相交.若∠1=130°.則∠2= 查看更多

 

題目列表(包括答案和解析)

(2013•澄江縣二模)如圖,已知:直線m分別與x軸、y軸相交于A、B兩點,拋物線y=ax2+bx+c經(jīng)過A(3,0)、B(0,3)、C(1,0)三點.
(1)求直線m的解析式;
(2)求拋物線的解析式及對稱軸;
(3)已知D(-1,0)在x軸上.問:在直線m上是否存在一點P使△ABO與△ADP相似?若存在請求出點P的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

如圖,已知:直線m分別與x軸、y軸相交于A、B兩點,拋物線y=ax2+bx+c經(jīng)過A(3,0)、B(0,3)、C(1,0)三點.
(1)求直線m的解析式;
(2)求拋物線的解析式及對稱軸;
(3)已知D(-1,0)在x軸上.問:在直線m上是否存在一點P使△ABO與△ADP相似?若存在請求出點P的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

綜合實踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點B分別與點A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應(yīng)條格所在直線的交點,用平滑的曲線順次連接各交點,得到一條曲線.
探索
如圖2,在平面直角坐標(biāo)系xOy中,將長方形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點B落在邊AD上的E處,過點E作EQ⊥BC,垂足為Q,交直線MN于點P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設(shè)點P坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當(dāng)點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的
53
,若存在,寫出點K的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

已知,四邊形ABCD中,∠BAD=60°,AB=AC=AD,對角線AC平分∠BAD,直角三角板30°角的頂點與A點重合,
(1)如圖,當(dāng)三角板的兩邊分別與BC、CD交于E、F時,通過觀察或測量,猜想線段BE和CF之間的數(shù)量關(guān)系,并證明;
(2)如圖,當(dāng)三角板的兩邊分別與BC、CD的延長線交于E、F時,通過觀察或測量,猜想線段BE和CF之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

綜合實踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點B分別與點A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應(yīng)條格所在直線的交點,用平滑的曲線順次連接各交點,得到一條曲線.
探索
如圖2,在平面直角坐標(biāo)系xOy中,將長方形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點B落在邊AD上的E處,過點E作EQ⊥BC,垂足為Q,交直線MN于點P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設(shè)點P坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當(dāng)點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的,若存在,寫出點K的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案