②參照(四)式得= . 查看更多

 

題目列表(包括答案和解析)

閱讀下列材料,然后回答問題!

在進行二次根式去處時,我們有時會碰上如,,一樣的式子,其實我們還可以將其進一步化簡:

;(一)

(二) 

。ㄈ

以上這種化簡的步驟叫做分母有理化。

還可以用以下方法化簡:

 (四)

請用不同的方法化簡。

參照(三)式得=_____________________________________________;

‚參照(四)式得=_________________________________________。

(2)化簡:。

查看答案和解析>>

閱讀下列材料,然后回答問題.
在進行二次根式的化簡與運算時,我們有時會碰上如
3
5
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
3
5
=
5
5
×
5
=
3
5
5
;(一)
2
3
=
2×3
3×3
=
6
3
(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1
(三)
以上這種化簡的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1
(四)
(1)請用不同的方法化簡
2
5
+
3

①參照(三)式得
2
5
+
3
=( 。
②參照(四)式得
2
5
+
3
=( 。
(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

閱讀下列材料,然后回答問題.
在進行二次根式的化簡與運算時,我們有時會碰上如
3
5
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
3
5
=
5
5
×
5
=
3
5
5
;(一)
2
3
=
2×3
3×3
=
6
3
(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1
(三)
以上這種化簡的步驟叫做分母有理化.
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1
(四)
(1)請用不同的方法化簡
2
5
+
3

①參照(三)式得
2
5
+
3
=(  );
②參照(四)式得
2
5
+
3
=(  )
(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>

閱讀與解答:
在進行二次根式化簡時,我們有時會碰上如
5
3
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
5
3
=
3
3
×
3
=
5
3
3
(一),
2
3
=
2×3
3×3
=
6
3
(二),
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1
(三),
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1
(四)
以上這種化簡的方法叫做分母有理化.
(1)請用不同的方法化簡
2
5
+
3

①參照(三)式得
2
5
+
3
=
 

②參照(四)式得
2
5
+
3
=
 

(2)化簡:
2
3
+1
+
2
5
+
3
+
2
7
+
5
+…+
2
2009
+
2007

查看答案和解析>>

閱讀下列材料,然后回答問題.在進行二次根式去除時,我們有時會碰上如
5
3
,
2
3
,
2
3
+1
一樣的式子,其實我們還可以將其進一步化簡:
5
3
=
5
5
×
5
=
3
5
5
(一)
2
3
=
2×3
3×3
=
6
3
2
3
=
2×3
3×3
=
6
3
(二)
2
3
+1
=
2×(
3
-1)
(
3
+1)(
3
-1)
=
2(
3
-1)
(
3
)
2
-12
=
3
-1
(三)
以上這種化簡的步驟叫做分母有理化.
2
3
+1
2
3
+1
還可以用以下方法化簡:
2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1

2
3
+1
=
3-1
3
+1
=
(
3
)
2
-12
3
+1
=
(
3
+1)(
3
-1)
3
+1
=
3
-1
(四)
(1)化簡
2
5
+
3

①參照(三)式得
2
5
+
3
=
 

②參照(四)式得
2
5
+
3
=
 

(2)化簡:
1
3
+1
+
1
5
+
3
+
1
7
+
5
+…+
1
2n+1
+
2n-1

查看答案和解析>>


同步練習冊答案