題目列表(包括答案和解析)
橢圓的方程為,離心率為,且短軸一端點和兩焦點構成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.
一. 選擇題
1A 2D 3B 4D 5C 6A 7B 8C 9B 10A 11D 12C
二. 13: 14: 1 15: 16:
(1).復數(shù) ( )
A.2 B.-2 C. D.
解:,選A。
(2).集合,則下列結論正確的是( )
A. B.
C. D.
解: ,,又
∴ ,選D。
(3).在平行四邊形ABCD中,AC為一條對角線,若,,則( )
A. (-2,-4) B.(-3,-5) C.(3,5) D.(2,4)
解:因為,選B。
(4).已知是因為,選B。。
兩條不同直線,是三個不同平面,下列命題中正確的是( )
A. B.
C. D.
解: 均為直線,其中平行,可以相交也可以異面,故A不正確;
m,n⊥α則同垂直于一個平面的兩條直線平行;選D。
(5).將函數(shù)的圖象按向量平移后所得的圖象關于點中心對稱,則向量的坐標可能為( )
A. B. C. D.
解:設平移向量,則函數(shù)按向量平移后的表達式為
,因為圖象關于點中心對稱,
故代入得: ,,
k=0得:,選C。本題也可以從選擇支出發(fā),逐個排除也可。
(6).設則中奇數(shù)的個數(shù)為( )
A.2 B.3 C.4 D.5
解:由題知,逐個驗證知,其它為偶數(shù),選A。
(7).是方程至少有一個負數(shù)根的( )
A.必要不充分條件 B.充分不必要條件
C.充分必要條件 D.既不充分也不必要條件
解:當,得a<1時方程有根。a<0時,,方程有負根,又a=1時,方程根為,所以選B
(8).若過點的直線與曲線有公共點,則直線的斜率的取值范圍為( ) A. B. C. D.
解:設直線方程為,即,直線與曲線有公共點,
圓心到直線的距離小于等于半徑 ,
得,選擇C
另外,數(shù)形結合畫出圖形也可以判斷C正確。
(9).在同一平面直角坐標系中,函數(shù)的圖象與的圖象關于直線對稱。而函數(shù)的圖象與的圖象關于軸對稱,若,則的值是( )
A. B. C. D.
解:由題知則,選D。
(10).設兩個正態(tài)分布和的密度函數(shù)圖像如圖所示。則有( )
A.
B.
C.
D.
解:根據(jù)正態(tài)分布函數(shù)的性質:正態(tài)分布曲線是一條關于對稱,在處取得最大值的連續(xù)鐘形曲線;越大,曲線的最高點越底且彎曲較平緩;反過來,越小,曲線的最高點越高且彎曲較陡峭,選A。
(11).若函數(shù)分別是上的奇函數(shù)、偶函數(shù),且滿足,則有( )
A. B.
C. D.
解: 用代換x得: ,
解得:,而單調遞增且大于等于0,,選D。
(12)12名同學合影,站成前排4人后排8人,現(xiàn)攝影師要從后排8人中抽2人調整到前排,若其他人的相對順序不變,則不同調整方法的總數(shù)是( )
A. B. C. D.
解:從后排8人中選2人共種選法,這2人插入前排4人中且保證前排人的順序不變,則先從4人中的5個空擋插入一人,有5種插法;余下的一人則要插入前排5人的空擋,有6種插法,故為;綜上知選C。
(13).函數(shù)的定義域為 .
解:由題知:;解得:x≥3.
(14)在數(shù)列在中,,,,其中為常數(shù),則的值是
解: ∵∴從而。
∴a=2,,則
(15)若為不等式組表示的平面區(qū)域,則當從-2連續(xù)變化到1時,動直線 掃過中的那部分區(qū)域的面積為
解:如圖知是斜邊為3 的等腰直角三角形,是直角邊為1等腰直角三角形,區(qū)域的面積
(16)已知在同一個球面上,若
,則兩點間的球面距離是
解: 如圖,易得,,,則此球內接長方體三條棱長為AB、BC、CD(CD的對邊與CD等長),從而球外接圓的直徑為,R=4則BC與球心構成的大圓如圖,因為△OBC為正三角形,則B,C兩點間的球面距離是。
三. 解答題
17解:(1)
由
函數(shù)圖象的對稱軸方程為
(2)
因為在區(qū)間上單調遞增,在區(qū)間上單調遞減,
所以 當時,去最大值 1
又 ,當時,取最小值
所以 函數(shù) 在區(qū)間上的值域為
18 方法一(綜合法)
(1)取OB中點E,連接ME,NE
又
(2)
為異面直線與所成的角(或其補角)
作連接
,
所以 與所成角的大小為
(3)點A和點B到平面OCD的距離相等,連接OP,過點A作
于點Q,
又 ,線段AQ的長就是點A到平面OCD的距離
,
,所以點B到平面OCD的距離為
方法二(向量法)
作于點P,如圖,分別以AB,AP,AO所在直線為軸建立坐標系
,
(1)
設平面OCD的法向量為,則
即
取,解得
(2)設與所成的角為,
, 與所成角的大小為
(3)設點B到平面OCD的交流為,則為在向量上的投影的絕對值,
由 , 得.所以點B到平面OCD的距離為
19 (1)由得,從而
的分布列為
0
1
2
3
4
5
6
(2)記”需要補種沙柳”為事件A, 則
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com