結(jié)論:在(均為正實(shí)數(shù))中.若為定值.則. 查看更多

 

題目列表(包括答案和解析)

對(duì)于任意正實(shí)數(shù)a,b,∵≥0,∴a+b﹣2≥0,∴a+b≥2,只有當(dāng)a=b時(shí),等號(hào)成立.結(jié)論:在a+b≥2(a,b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2只有當(dāng)a=b時(shí),a+b有最小值2.根據(jù)上述內(nèi)容,回答下列問(wèn)題:若m>0,只有當(dāng)m=_________,m+有最小值_______。

查看答案和解析>>

閱讀理解:
對(duì)于任意正實(shí)數(shù)a,b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b≥0,∴a+b≥2
ab
,只有點(diǎn)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a,b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問(wèn)題:
(1)若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 
;
(2)思考驗(yàn)證:
①如圖1,AB為半圓O的直徑,C為半圓上任意一點(diǎn),(與點(diǎn)A,B不重合).過(guò)點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.試根據(jù)圖形驗(yàn)證a+b≥2
ab
,并指出等號(hào)成立時(shí)的條件;
②探索應(yīng)用:如圖2,已知A(-3,0),B(0,-4)P為雙曲線(xiàn)y=
12
x
(x>0)
上的任意一點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說(shuō)明此時(shí)四邊形ABCD的形狀.
精英家教網(wǎng)

查看答案和解析>>

閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

根據(jù)上述內(nèi)容,回答:若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 

查看答案和解析>>

閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

根據(jù)上述內(nèi)容,回答下列問(wèn)題:
(1)若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 

(2)若m>0,只有當(dāng)m=
 
時(shí),2m+
8
m
有最小值
 

查看答案和解析>>

閱讀理解:
對(duì)于任意正實(shí)數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b≥0,
∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p

(1)根據(jù)上述內(nèi)容,回答下列問(wèn)題:
若m>0,只有當(dāng)m=
1
1
時(shí),m+
1
m
有最小值
2
2

(2)探索應(yīng)用:如圖,已知A(-3,0),B(0,-4),P為雙曲線(xiàn)y=
12
x
(x>0)圖象上的任意一點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值.
(3)判斷此時(shí)四邊形ABCD的形狀,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案