的結(jié)果.再結(jié)合同底數(shù)冪的乘法法則:“同底數(shù)冪相乘.底數(shù)不變.指數(shù)相加 .即.你能歸納出一個(gè)一般性的結(jié)論嗎? 查看更多

 

題目列表(包括答案和解析)

在數(shù)學(xué)學(xué)習(xí)過(guò)程中,通常是利用已有的知識(shí)與經(jīng)驗(yàn),通過(guò)對(duì)研究對(duì)象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對(duì)象的本質(zhì)特征.
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過(guò)程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的:22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整數(shù)).
探索問(wèn)題:
(1)比較下列各組數(shù)據(jù)的大。
2
3
2+1
3+1
,②
2
3
2+2
3+2
,③
2
3
2+3
3+3
,④
2
3
2+4
3+4
,….
(2)請(qǐng)你根據(jù)上面的材料歸納出a、b、c(a>b>0,c>0)之間的一個(gè)數(shù)學(xué)關(guān)系式;并用已學(xué)的數(shù)學(xué)知識(shí)說(shuō)明你發(fā)現(xiàn)結(jié)論的正確性.
(3)試用(2)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個(gè)現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”.

查看答案和解析>>

在數(shù)學(xué)學(xué)習(xí)過(guò)程中,通常是利用已有的知識(shí)與經(jīng)驗(yàn),通過(guò)對(duì)研究對(duì)象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對(duì)象的本質(zhì)特征.
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過(guò)程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的:22×23=25,23×24=27,22×26=28…?2m×2n=2m+n…?am×an=am+n(m、n都是正整數(shù)).
我們亦知:
2
3
2+1
3+1
2
3
2+2
3+2
,
2
3
2+3
3+3
,
2
3
2+4
3+4

(1)請(qǐng)你根據(jù)上面的材料歸納出a、b、c(a>b>0,c>0)之間的一個(gè)數(shù)學(xué)關(guān)系式.
(2)試用(1)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個(gè)現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”.

查看答案和解析>>

25、(1)寫一個(gè)多項(xiàng)式,再把它分解因式(要求:多項(xiàng)式含有字母m和n,系數(shù)、次數(shù)不限,并能先用提取公因式法再用公式法分解).
(2)閱讀下列分解因式的過(guò)程,再回答所提出的問(wèn)題:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①
=(1+x)2(1+x)②
=(1+x)3
①上述分解因式的方法是
提公因式法分解因式
,由②到③這一步的根據(jù)是
同底數(shù)冪的乘法法則

②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,結(jié)果是
(1+x)2007
;
③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).

查看答案和解析>>

在數(shù)學(xué)里,我們規(guī)定:a-n=
1
an
 (a≠O).無(wú)論從仿照同底數(shù)冪的除法公式來(lái)分析,還是仿照分式的約分來(lái)分析,這種規(guī)定都是合理的.正是有了這種規(guī)定,指數(shù)的范圍由非負(fù)數(shù)擴(kuò)大到全體整數(shù),概念的擴(kuò)充與完善使我們解決問(wèn)題的路更寬了.例如a2•a-3=a2+(-3)=a-1=
1
a
.?dāng)?shù)的發(fā)展經(jīng)歷了漫長(zhǎng)的過(guò)程,其實(shí)人們?cè)缇桶l(fā)現(xiàn)了非實(shí)數(shù)的數(shù).人們規(guī)定:i2=-1,這里數(shù)i類似于實(shí)數(shù)單位1,它的運(yùn)算法則與實(shí)數(shù)運(yùn)算法則完全類似:2i+
1
3
i=
7
3
i(注意:由于非實(shí)數(shù)與實(shí)數(shù)單位不同,因此像2+i之類的運(yùn)算便無(wú)法繼續(xù)進(jìn)行,2+i就是一個(gè)非實(shí)數(shù)的數(shù)),6•0.5i=3i; 2i•3i=6i2=-6;(3i)2=-9;-4的平方根為±2i;如果x2=-7,那么x=±
7
i.…數(shù)的不斷發(fā)展進(jìn)一步證實(shí),這種規(guī)定是合理的.
(1)想一想,作這樣的規(guī)定有什么好處?
(2)試用配方法求一元二次方程x2+x+1=0的非實(shí)數(shù)解:
(3)你認(rèn)為,在學(xué)習(xí)中,當(dāng)面臨一個(gè)新的挑戰(zhàn)時(shí),我們應(yīng)如何面對(duì)?

查看答案和解析>>

在數(shù)學(xué)學(xué)習(xí)過(guò)程中,通常是利用已有的知識(shí)與經(jīng)驗(yàn),通過(guò)對(duì)研究對(duì)象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對(duì)象的本質(zhì)特征.
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過(guò)程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整數(shù)).我們亦知:
2
3
2+1
3+1
2
3
2+2
3+2
,
2
3
2+3
3+3
,
2
3
2+4
3+4
,…
(1)請(qǐng)你根據(jù)上面的材料歸納出a、b、c(a>b>0,c>0)之間的一個(gè)數(shù)學(xué)關(guān)系式;
(2)試用(1)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個(gè)現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”;
(3)如圖,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根據(jù)這個(gè)圖形提煉出與(1)中相精英家教網(wǎng)同的關(guān)系式并給予證明.

查看答案和解析>>


同步練習(xí)冊(cè)答案