22.已知:如下圖.在△ABC中.AB=AC.AD⊥BC.垂足為點D.AN是△ABC外角∠CAM的平分線.CE⊥AN.垂足為點E. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)

    學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

根據(jù)上述對角的正對定義,解下列問題:

(1)sad 的值為(   )A.       B.1  C.      D.2

 

(2)對于,∠A的正對值sad A的取值范圍是        .

(3)已知,其中為銳角,試求sad的值.

 

 

查看答案和解析>>

(本小題滿分14分)

如圖,已知拋物線yax2bxcx軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3)。設(shè)拋物線的頂點為D,求解下列問題:

1.(1)求拋物線的解析式和D點的坐標(biāo);

2.(2)過點D作DF∥軸,交直線BC于點F,求線段DF的長,并求△BCD的面積;

3.(3)能否在拋物線上找到一點Q,使△BDQ為直角三角形?若能找到,試寫出Q點的坐標(biāo);若不能,請說明理由。

 

查看答案和解析>>

(本小題滿分12分)已知直角坐標(biāo)系中菱形ABCD的位置如圖,C,D兩點的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動點P,Q分別從A,C同時出發(fā),點P沿線段AD向終點D運動,點Q沿折線CBA向終點A運動,設(shè)運動時間為t秒.

1.(1)填空:菱形ABCD的邊長是  ▲  、面積是

  ▲  、 高BE的長是  ▲  ;

2.(2)探究下列問題:

①若點P的速度為每秒1個單位,點Q的速度為每秒2個單位.當(dāng)點Q在線段BA上時,求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;

②若點P的速度為每秒1個單位,點Q的速度變?yōu)槊棵?i>k個單位,在運動過程中,任何時刻都有相應(yīng)的k值,使得△APQ沿它的一邊翻折,翻折前后兩個三角形組成的四邊形為菱形.請?zhí)骄慨?dāng)t = 4 秒時的情形,并求出k的值.

 

查看答案和解析>>

(本小題滿分5分)某校對九年級學(xué)生進(jìn)行“綜合素質(zhì)”評價,評價的結(jié)果為A(優(yōu))、B(良好)、C(合格)、D(不合格)四個等級,現(xiàn)從中抽測了若干名學(xué)生的“綜合素質(zhì)”等級作為樣本進(jìn)行數(shù)據(jù)處理,并作出如圖所示的統(tǒng)計圖,已知圖中從左到右的四個長方形的高的比為:14:9:6:1,評價結(jié)果為D等級的有2人,請你回答以下問題:

1. (1)共抽測了多少人?

2. (2)樣本中B等級的頻率是多少?

3.(3) 如果要繪制扇形統(tǒng)計圖,A等級在扇形統(tǒng)計圖中所占的圓心角是多少度?

4.(4)該校九年級的畢業(yè)生共300人,假如“綜合素質(zhì)”等級為A或B的學(xué)生才能報考示范性高中,請你計算該校大約有多少名學(xué)生可以報考示范性高中?

 

查看答案和解析>>

(本小題滿分14分)
如圖,已知拋物線yax2bxcx軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3)。設(shè)拋物線的頂點為D,求解下列問題:

【小題1】(1)求拋物線的解析式和D點的坐標(biāo);
【小題2】(2)過點D作DF∥軸,交直線BC于點F,求線段DF的長,并求△BCD的面積;
【小題3】(3)能否在拋物線上找到一點Q,使△BDQ為直角三角形?若能找到,試寫出Q點的坐標(biāo);若不能,請說明理由。

查看答案和解析>>


同步練習(xí)冊答案