已知等邊三角形紙片ABC的邊長為8,D為AB邊上的點(diǎn),過點(diǎn)D作DG∥BC交AC于點(diǎn)G.DE⊥BC于點(diǎn)E,過點(diǎn)G作GF⊥BC于點(diǎn)F,把三角形紙片ABC分別沿DG,DE,GF按圖1所示方式折疊,點(diǎn)A,B,C分別落在點(diǎn)A′,B′,C′處.若點(diǎn)A′,B′,C′在矩形DEFG內(nèi)或其邊上,且互不重合,此時我們稱△A′B′C′(即圖中陰影部分)為“重疊三角形”.
(1)若把三角形紙片ABC放在等邊三角形網(wǎng)格中(圖中每個小三角形都是邊長為1的等邊三角形),點(diǎn)A,B,C,D恰好落在網(wǎng)格圖中的格點(diǎn)上.如圖2所示,請直接寫出此時重疊三角形A′B′C′的面積;
(2)實(shí)驗(yàn)探究:設(shè)AD的長為m,若重疊三角形A′B′C′存在.試用含m的代數(shù)式表示重疊
三角形A′B′C′的面積,并寫出m的取值范圍.(直接寫出結(jié)果)