A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

(必做題)先閱讀:如圖,設(shè)梯形ABCD的上、下底邊的長分別是a,b(a<b),高為h,求梯形的面積.
方法一:延長DA、CB交于點O,過點O作CD的垂線分別交AB、CD于E、F,則EF=h.
設(shè)OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行線MN分別交AD、BC于MN,過點A作BC的平行線AQ分別于MN、DC于PQ,則△AMP∽△ADQ.
設(shè)梯形AMNB的高為x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的問題:
已知四棱臺ABCD-A′B′C′D′的上、下底面的面積分別是S1,S2(S1<S2),棱臺的高為h,類比以上兩種方法,分別求出棱臺的體積(棱錐的體積=
1
3
×底面積×高).

查看答案和解析>>

下列命題中正確的是(   

A.若兩條直線都垂直于第三條直線,則這兩條直線一定平行;

B.若兩條直線和第三條直線成等角,則這兩條直線平行;

C.與兩條異面直線都垂直的直線,叫做異面直線的公垂線;

D.一直線與兩平行線中的一條垂直,則必與另一條也垂直.

 

查看答案和解析>>

下列命題中正確的是(   

A.若兩條直線都垂直于第三條直線,則這兩條直線一定平行;

B.若兩條直線和第三條直線成等角,則這兩條直線平行;

C.與兩條異面直線都垂直的直線,叫做異面直線的公垂線;

D.一直線與兩平行線中的一條垂直,則必與另一條也垂直.

 

查看答案和解析>>

小明做了兩道題,事件A為“做對第一個”,事件B為“做對第二個”,其中“做對第一個”與“做對第二個”的概率都是,下列說法正確的是( 。

    A.小明做對其中一個的概率為

    B.事件A與事件B為互斥事件

    C.A∩B={兩個題都做對}

    D.事件A與事件B必然要發(fā)生一個

     

查看答案和解析>>

為了解某中學(xué)生遵守《中華人民共和國交通安全法》的情況,調(diào)查部門在該校進行了如下的隨機調(diào)查,向被調(diào)查者提出兩個問題:(1)你的學(xué)號是奇數(shù)嗎?(2)在過路口時你是否闖過紅燈?要求被調(diào)查者背對著調(diào)查人員拋擲一枚硬幣,如果出現(xiàn)正面,就回答第一個問題,否則就回答第二個問題.被調(diào)查者不必告訴調(diào)查人員自己回答的是哪一個問題,只需回答“是”或“不是”,因為只有調(diào)查者本人知道回答了哪一個問題,所以都如實地做了回答.結(jié)果被調(diào)查的800人(學(xué)號從1至800)中有240人回答了“是”.由此可以估計這800人中闖過紅燈的人數(shù)是( 。

查看答案和解析>>

 

一、選擇題:C D C C     A D B B

1.C【解析】,而,即,

2.D【解析】,,故

3.C【解析】依題意我們知道二年級的女生有380人,那么三年級的學(xué)生的人數(shù)應(yīng)該是,即總體中各個年級的人數(shù)比例為,故在分層抽樣中應(yīng)在三年級抽取的學(xué)生人數(shù)為

4.C  5.A

6.D【解析】不難判斷命題為真命題,命題為假命題,從而上述敘述中只有 為真命題

7.B【解析】,若函數(shù)在上有大于零的極值點,即有正根。當(dāng)有成立時,顯然有,此時,由我們馬上就能得到參數(shù)的范圍為。

8.B      

 

二、填空題:

9.【解析】要結(jié)束程序的運算,就必須通過整除的條件運算,而同時也整除,那么的最小值應(yīng)為的最小公倍數(shù)12,即此時有。

10.【解析】按二項式定理展開的通項為,我們知道的系數(shù)為,即,也即,而是正整數(shù),故只能取1。

11.【解析】易知點C為,而直線與垂直,我們設(shè)待求的直線的方程為,將點C的坐標(biāo)代入馬上就能求出參數(shù)的值為,故待求的直線的方程為

12.【解析】,故函數(shù)的最小正周期。

 

二、選做題(13―15題,考生只能從中選做兩題)

13.【解析】解得,即兩曲線的交點為。

14.

15.【解析】依題意,我們知道,由相似三角形的性質(zhì)我們有,即。

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明,證明過程或演算步驟.

16.解:(1)依題意有,則,將點代入得,而,,故;

(2)依題意有,而,

,

。

 

17.解:(1)的所有可能取值有6,2,1,-2;,

的分布列為:

6

2

1

-2

0.63

0.25

0.1

0.02

(2)

(3)設(shè)技術(shù)革新后的三等品率為,則此時1件產(chǎn)品的平均利潤為

依題意,,即,解得

所以三等品率最多為

 

18.解:(1)由,

當(dāng)G點的坐標(biāo)為,

,

過點G的切線方程為,

,點的坐標(biāo)為

由橢圓方程得點的坐標(biāo)為,,

即橢圓和拋物線的方程分別為;

(2)軸的垂線與拋物線只有一個交點,

為直角的只有一個,同理為直角的只有一個。

若以為直角,設(shè)點坐標(biāo)為,、兩點的坐標(biāo)分別為,

。

關(guān)于的二次方程有一大于零的解,有兩解,即以為直角的有兩個,

因此拋物線上存在四個點使得為直角三角形。

 

19.解:

對于,

當(dāng)時,函數(shù)上是增函數(shù);

當(dāng)時,函數(shù)上是減函數(shù),在上是增函數(shù);

對于,

當(dāng)時,函數(shù)上是減函數(shù);

當(dāng)時,函數(shù)上是減函數(shù),在上是增函數(shù)。

 

20.解:(1)在中,

而PD垂直底面ABCD,

,

中,,即為以為直角的直角三角形。

設(shè)點到面的距離為,

,

,

;

(2),而,

,,是直角三角形;

(3),,

,

的面積

21.解:(1)由求根公式,不妨設(shè),得

,

(2)設(shè),則,由

得,,消去,得,是方程的根,

由題意可知,

①當(dāng)時,此時方程組的解記為

、分別是公比為、的等比數(shù)列,

由等比數(shù)列性質(zhì)可得,,

兩式相減,得

,

,即,

②當(dāng)時,即方程有重根,

,得,不妨設(shè),由①可知

,

,等式兩邊同時除以,得,即

數(shù)列是以1為公差的等差數(shù)列,

綜上所述,

(3)把,代入,得,解得


同步練習(xí)冊答案