4. 在三角形ABC中.若.則sinC等于 查看更多

 

題目列表(包括答案和解析)

在三角形ABC中,若∠A+∠B=120°,則sinC等于( 。
A、
1
2
B、
3
2
C、
2
5
2
D、
4
5

查看答案和解析>>

觀察與思考:閱讀下列材料,并解決后面的問題.在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作 AD⊥BC于D(如圖),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有:,,所以

即:在一個三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.

1.如圖,△ABC中,∠B=450,∠C=750,BC=60,則∠A=       ;AC=        ;

2.如圖,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西75°的方向上(如圖),求此時貨輪距燈塔A的距離AB.

 

查看答案和解析>>

觀察與思考:閱讀下列材料,并解決后面的問題.在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作 AD⊥BC于D(如圖),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有:,,所以
即:在一個三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.
【小題1】如圖,△ABC中,∠B=450,∠C=750,BC=60,則∠A=      ;AC=       ;
【小題2】如圖,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西75°的方向上(如圖),求此時貨輪距燈塔A的距離AB.

查看答案和解析>>

觀察與思考:閱讀下列材料,并解決后面的問題.在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作 AD⊥BC于D(如圖),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有:,所以
即:在一個三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.
【小題1】如圖,△ABC中,∠B=450,∠C=750,BC=60,則∠A=      ;AC=       ;
【小題2】如圖,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西75°的方向上(如圖),求此時貨輪距燈塔A的距離AB.

查看答案和解析>>

觀察與思考:閱讀下列材料,并解決后面的問題.在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作 AD⊥BC于D(如圖),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有:,,所以

即:在一個三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.

1.如圖,△ABC中,∠B=450,∠C=750,BC=60,則∠A=       ;AC=       

2.如圖,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西75°的方向上(如圖),求此時貨輪距燈塔A的距離AB.

 

查看答案和解析>>


同步練習冊答案