11.一元二次方程(1+3)(一3)=22+1化為一般形式為: .二次項(xiàng)系數(shù)為: .一次項(xiàng)系數(shù)為: .常數(shù)項(xiàng)為: . 查看更多

 

題目列表(包括答案和解析)

(1)先化簡,再求值:(x+2-
5
x-2
x-3
x-2
,其中x=
5
-3
;
(2)若a=1-
2
,先化簡再求
a2-1
a2+a
+
a2-2a+1
a2-a
的值;
(3)已知a=
2
+1,b=
2
-1
,求a2-a2005b2006+b2的值;
(4)已知:實(shí)數(shù)a,b在數(shù)軸上的位置如圖所示,
精英家教網(wǎng)
化簡:
(a+1)2
+2
(b-1)2
-|a-b|;
(5)觀察下列各式及驗(yàn)證過程:
N=2時(shí)有式①:
2
3
=
2+
2
3

N=3時(shí)有式②:
3
8
=
3+
3
8

式①驗(yàn)證:
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2+
2
3

式②驗(yàn)證:
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

①針對(duì)上述式①、式②的規(guī)律,請(qǐng)寫出n=4時(shí)變化的式子;
②請(qǐng)寫出滿足上述規(guī)律的用n(n為任意自然數(shù),且n≥2)表示的等式,并加以驗(yàn)證.
(6)已知關(guān)于x的一元二次方程x2+(2m-1)+m2=0有兩個(gè)實(shí)數(shù)根x1和x2.    ①求實(shí)數(shù)m的取值范圍;②當(dāng)x12-x22=0時(shí),求m的值.

查看答案和解析>>

(2013•青島)在前面的學(xué)習(xí)中,我們通過對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式.
這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.

【研究速算】
提出問題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖3,將這個(gè)47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達(dá)方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果.
歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果

【研究方程】
提出問題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫四個(gè)長為x+2,寬為x的矩形,構(gòu)造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,(x+x+2)2或四個(gè)長x+2,寬x的矩形面積之和,加上中間邊長為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關(guān)于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并注明相關(guān)線段的長)
【研究不等關(guān)系】
提出問題:怎樣運(yùn)用矩形面積表示(y+3)(y+2)與2y+5的大小關(guān)系(其中y>0)?
幾何建模:
(1)畫長y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫點(diǎn)部分部分的面積可表示為y+2,由圖形的部分與整體的關(guān)系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當(dāng)a>2,b>2時(shí),表示ab與a+b的大小關(guān)系.
根據(jù)題意,設(shè)a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖并注明相關(guān)線段的長)

查看答案和解析>>

(教材變式題)把關(guān)于x的方程
(x-1)2
2
+3x=
5
2
(x+1)化為一元二次方程的一般式,并指出二次項(xiàng),一次項(xiàng)的系數(shù)和常數(shù)項(xiàng).

查看答案和解析>>

(教材變式題)把關(guān)于x的方程
(x-1)2
2
+3x=
5
2
(x+1)化為一元二次方程的一般式,并指出二次項(xiàng),一次項(xiàng)的系數(shù)和常數(shù)項(xiàng).

查看答案和解析>>

閱讀下列解題過程,借鑒其中一種方法解答后面給出的試題:
問題:某人買13個(gè)雞蛋,5個(gè)鴨蛋、9個(gè)鵝蛋共用去了9.25元;買2個(gè)雞蛋,4個(gè)鴨蛋、3個(gè)鵝蛋共用去了3.20元.試問只買雞蛋、鴨蛋、鵝蛋各一個(gè)共需多少元.
分析:設(shè)買雞蛋,鴨蛋、鵝蛋各一個(gè)分別需x、y、z元,則需要求x+y+z的值.由題意,知數(shù)學(xué)公式;
視x為常數(shù),將上述方程組看成是關(guān)于y、z的二元一次方程組,化“三元”為“二元”、化“二元”為“一元”從而獲解.
解法1:視x為常數(shù),依題意得數(shù)學(xué)公式
解這個(gè)關(guān)于y、z的二元一次方程組得數(shù)學(xué)公式
于是x+y+z=x+0.05+x+1-2x=1.05.
評(píng)注:也可以視z為常數(shù),將上述方程組看成是關(guān)于x、y的二元一次方程組,解答方法同上,你不妨試試.
分析:視x+y+z為整體,由(1)、(2)恒等變形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
解法2:設(shè)x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下關(guān)于a、b的二元一次方
程組數(shù)學(xué)公式
由⑤+4×⑥,得21a+22.05,a=1.05.
評(píng)注:運(yùn)用整體的思想方法指導(dǎo)解題.視x+y+z,2x+z為整體,令a=x+y+z,b=2x+z,代入①、②將原方程組轉(zhuǎn)化為關(guān)于a、b的二元一次方程組從而獲解.
請(qǐng)你運(yùn)用以上介紹的任意一種方法解答如下數(shù)學(xué)競賽試題:
購買五種教學(xué)用具A1、A2、A3、A4、A5的件數(shù)和用錢總數(shù)列成下表:

那么,購買每種教學(xué)用具各一件共需多少元?

查看答案和解析>>


同步練習(xí)冊(cè)答案