例3.如圖.一載著重危病人的火車從O地出發(fā).沿射線OA行駛.其中在距離O地5a公里北偏東β角的N處住有一位醫(yī)學專家.其中 (1)求S關于p的函數關系, (2)當p為何值時.搶救最及時.解:(1)以O為原點.正北方向為y軸建立直角坐標系.則 設N(x0.y0). 又B(p.0).∴直線BC的方程為: 由得C的縱坐標.∴得 ∴.∴當且僅當時.上式取等號.∴當公里時.搶救最及時. 查看更多

 

題目列表(包括答案和解析)

如圖,一載著重危病人的火車從O地出發(fā),沿射線OA行駛,其中tanα=在距離O地5a(a為正數)公里北偏東β角的N處住有一位醫(yī)學專家,其中sinβ=,現(xiàn)有110指揮部緊急征調離O地正東p公里的B處的救護車趕往N處載上醫(yī)學專家全速追趕乘有重危病人的火車,并在C處相遇,經測算當兩車行駛的路線與OB圍成的三角形OBC面積S最小時,搶救最及時.

(1)求S關于p的函數關系;

(2)當p為何值時,搶救最及時.

查看答案和解析>>

如圖,一載著重危病人的火車從O地出發(fā),沿射線OA行駛,其中tanα=,在距離O地5a(a為正數)公里北偏東β角的N處住有一位醫(yī)學專家,其中sinβ=,現(xiàn)110指揮部緊急征調離O地正東p公里的B處的救護車趕往N處載上醫(yī)學專家全速追趕乘有重危病人的火車,并在C處相遇,經測算當兩車行駛的路線與OB圍成的三角形OBC面積S最小時,搶救最及時,

(1)求S關于p的函數關系;

(2)當p為何值時,搶救最及時.

查看答案和解析>>

如圖,一載著重危病人的火車從O地出發(fā),沿射線OA行駛,其中tanα=,在距離O地5a(a為正數)公里北偏東β角的N處有一位醫(yī)學專家,其中sinβ=,現(xiàn)110指揮部緊急征調離O地正東p公里的B處的救護車趕往N處載上醫(yī)學專家全速追趕乘有危重病人的火車,并在C處相遇,經測算當兩車行駛的路線與OB圍成的三角形OBC面積最小時,搶救最及時.

(1)求S關于p的函數關系;

(2)當p為何值時,搶救最及時.

查看答案和解析>>

精英家教網如圖所示,一輛載著重危病人的火車從O地出發(fā),沿射線OA行駛(北偏東α角),其中tanα=
1
3
,在距離O地5a km(a為正數)北偏東β角的N處住有一位醫(yī)學專家,其中sinβ=
3
5
.現(xiàn)110指揮部緊急征調離O地正東p km的B處的救護車趕往N處載上醫(yī)學專家全速追趕載有重危病人的火車,并在C處相遇,經測算當輛車行駛路線與OB圍成的三角形OBC面積S最小時,搶救最及時.
(1)求S關于p的函數關系;
(2)當p為何值時,搶救最及時?

查看答案和解析>>

如圖所示,一輛載著重危病人的火車從O地出發(fā),沿射線OA行駛(北偏東α角),其中,在距離O地5a km(a為正數)北偏東β角的N處住有一位醫(yī)學專家,其中.現(xiàn)110指揮部緊急征調離O地正東p km的B處的救護車趕往N處載上醫(yī)學專家全速追趕載有重危病人的火車,并在C處相遇,經測算當輛車行駛路線與OB圍成的三角形OBC面積S最小時,搶救最及時.
(1)求S關于p的函數關系;
(2)當p為何值時,搶救最及時?

查看答案和解析>>

例10.(2004年重慶卷)某工廠生產某種產品,已知該產品的月生產量(噸)與每噸產品的價格(元/噸)之間的關系式為:,且生產x噸的成本為(元).問該廠每月生產多少噸產品才能使利潤達到最大?最大利潤是多少?(利潤=收入─成本)

解:每月生產x噸時的利潤為

               

  ,故它就是最大值點,且最大值為:

        答:每月生產200噸產品時利潤達到最大,最大利潤為315萬元.

 


同步練習冊答案