二次函數(shù).指數(shù)函數(shù)以及函數(shù)的性質(zhì)要熟練掌握. 查看更多

 

題目列表(包括答案和解析)

某公司為了適應(yīng)市場需求,對產(chǎn)品結(jié)構(gòu)做了重大調(diào)整.調(diào)整后初期利潤增長迅速,后來增長越來越慢,若要建立恰當(dāng)?shù)暮瘮?shù)模型來反映該公司調(diào)整后利潤y與產(chǎn)量x的關(guān)系,則可選用


  1. A.
    一次函數(shù)
  2. B.
    二次函數(shù)
  3. C.
    指數(shù)型函數(shù)
  4. D.
    對數(shù)型函數(shù)

查看答案和解析>>

3、某公司為了適應(yīng)市場需求對產(chǎn)品結(jié)構(gòu)做了重大調(diào)整,調(diào)整后初期利潤增長迅速,后來增長越來越慢,若要建立恰當(dāng)?shù)暮瘮?shù)模型來反映該公司調(diào)整后利潤y與時間x的關(guān)系,可選用( 。

查看答案和解析>>

下表顯示出函數(shù)值y隨自變量x變化的一組數(shù)據(jù),由此可判斷它最可能的函數(shù)模型為( 。
x -2 -1 0 1 2 3
y
1
16
1
4
1 4 16 64

查看答案和解析>>

精英家教網(wǎng)學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)x∈(0,12]時,圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn)A(10,80),過點(diǎn)B(12,78);當(dāng)x∈[12,40]時,圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時,學(xué)習(xí)效果最佳.
(1)試求y=f(x)的函數(shù)關(guān)系式;
(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.

查看答案和解析>>

已知二次函數(shù)f(x)=x2-2mx+1,若對于[0,1]上的任意三個實(shí)數(shù)a,b,c,函數(shù)值f(a),f(b),f(c)都能構(gòu)成一個三角形的三邊長,則滿足條件的m的值可以是
(0<m<
2
2
內(nèi)的任一實(shí)數(shù))
(0<m<
2
2
內(nèi)的任一實(shí)數(shù))
.(寫出一個即可)

查看答案和解析>>

例10.(2004年重慶卷)某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量(噸)與每噸產(chǎn)品的價(jià)格(元/噸)之間的關(guān)系式為:,且生產(chǎn)x噸的成本為(元).問該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤達(dá)到最大?最大利潤是多少?(利潤=收入─成本)

解:每月生產(chǎn)x噸時的利潤為

               

  ,故它就是最大值點(diǎn),且最大值為:

        答:每月生產(chǎn)200噸產(chǎn)品時利潤達(dá)到最大,最大利潤為315萬元.

 


同步練習(xí)冊答案