22. 已知函數(shù)=++.x∈. (1)當(dāng)時(shí).求的單調(diào)區(qū)間, (2)對(duì)任意正數(shù).證明:. 2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該

 

函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).

(1)如果函數(shù)>0)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052422081064063640/SYS201205242209514375278025_ST.files/image008.png">6,+∞,求的值;

 

(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;

 

(3)對(duì)函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的

 

函數(shù)的特例.

(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你

 

的研究結(jié)論).

 

查看答案和解析>>

(本小題滿分14分)已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)>0)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d8/1/skgw31.gif" style="vertical-align:middle;" />6,+∞,求的值;
(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對(duì)函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).

查看答案和解析>>

(本小題滿分14分)已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)>0)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823190522855112.gif" style="vertical-align:middle;" />6,+∞,求的值;
(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對(duì)函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).

查看答案和解析>>

(本小題滿分14分)已知函數(shù)f(x)=(x2-3x+3)·ex的定義域?yàn)閇-2,t](t>-2),設(shè)f(-2)=m,f(t)=n.

(1)試確定t的取值范圍,使得函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù);

(2)求證:n>m;

(3)若t為自然數(shù),則當(dāng)t取哪些值時(shí),方程f(x)-m=0(m∈R)在[-2,t]上有三個(gè)不相等的實(shí)數(shù)根,并求出相應(yīng)的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

15.(本小題滿分14分)

已知函數(shù)f(x)=sin2x+sinxcosx-(xÎR).

(1)若xÎ(0,),求f(x)的最大值;

(2)在△ABC中,若A<B,f(A)=f(B)=,求的值.

 

查看答案和解析>>

 

一.   選擇題:本大題共12小題,每小題5分,共60分。

 

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

D

B

A

A

D

C

D

A

C

C

B

1..因所以對(duì)應(yīng)的點(diǎn)在第四象限,

2..因,

3..令,則,

4..

5. . ,,…,

6.D.  函數(shù)

7. .由題知,垂足的軌跡為以焦距為直徑的圓,則

又,所以

8.. 常數(shù)項(xiàng)為

9. A.

 

10.. 解:①③④正確,②錯(cuò)誤。易求得、到球心的距離分別為3、2,若兩弦交于,則⊥,中,有,矛盾。當(dāng)、、共線時(shí)分別取最大值5最小值1。

11. . 一天顯示的時(shí)間總共有種,和為23總共有4種,故所求概率為.

12.. 解:當(dāng)時(shí),顯然不成立

當(dāng)時(shí),因當(dāng)即時(shí)結(jié)論顯然成立;

當(dāng)時(shí)只要即可

二.   填空題:本大題共4小題,每小題4分,共16分。

13.        14.         15.       16. B、D

13. 由已知得,則

14.

15.

16. 解:真命題的代號(hào)是:   BD  。易知所盛水的容積為容器容量的一半,故D正確,于是A錯(cuò)誤;水平放置時(shí)由容器形狀的對(duì)稱性知水面經(jīng)過點(diǎn)P,故B正確;C的錯(cuò)誤可由圖1中容器位置向右邊傾斜一些可推知點(diǎn)P將露出水面。

三.   解答題:本大題共6小題,共74分。

17.解:由得

∴   ∴

∴,又

由得

即   ∴

由正弦定理得

18.解:(1)的所有取值為

的所有取值為,

、的分布列分別為:

0.8

0.9

1.0

1.125

1.25

P

0.2

0.15

0.35

0.15

0.15

 

0.8

0.96

1.0

1.2

1.44

P

0.3

0.2

0.18

0.24

0.08

 

(2)令A(yù)、B分別表示方案一、方案二兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量這一事件,

,

可見,方案二兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大

(3)令表示方案所帶來的效益,則

10

15

20

P

0.35

0.35

0.3

 

10

15

20

P

0.5

0.18

0.32

 

所以

可見,方案一所帶來的平均效益更大。

19.解:(1)設(shè)的公差為,的公比為,則為正整數(shù),

,

依題意有①

由知為正有理數(shù),故為的因子之一,

解①得

(2)

20.解 :(1)證明:依題設(shè),是的中位線,所以∥,

則∥平面,所以∥。

又是的中點(diǎn),所以⊥,則⊥。

因?yàn)椤,⊥?/p>

所以⊥面,則⊥,

因此⊥面。

(2)作⊥于,連。因?yàn)椤推矫妫?/p>

根據(jù)三垂線定理知,⊥,

就是二面角的平面角。

作⊥于,則∥,則是的中點(diǎn),則。

設(shè),由得,,解得,

在中,,則,。

所以,故二面角為。

 

解法二:(1)以直線分別為軸,建立空間直角坐標(biāo)系,則

所以

所以

所以平面

由∥得∥,故:平面

 

(2)由已知設(shè)

由與共線得:存在有得

 

同理:

設(shè)是平面的一個(gè)法向量,

則令得 

又是平面的一個(gè)法量

所以二面角的大小為

(3)由(2)知,,,平面的一個(gè)法向量為。

則。

則點(diǎn)到平面的距離為

 

21.證明:(1)設(shè),由已知得到,且,,

設(shè)切線的方程為:由得

從而,解得

因此的方程為:

同理的方程為:

又在上,所以,

即點(diǎn)都在直線上

又也在直線上,所以三點(diǎn)共線

(2)垂線的方程為:,

由得垂足,

設(shè)重心

所以     解得

由 可得即為重心所在曲線方程

 

22.解:、當(dāng)時(shí),,求得 ,

于是當(dāng)時(shí),;而當(dāng) 時(shí),.

即在中單調(diào)遞增,而在中單調(diào)遞減.    

(2).對(duì)任意給定的,,由 ,

若令 ,則   … ① ,而     …  ②

(一)、先證;因?yàn),,?/p>

又由  ,得 .

所以

(二)、再證;由①、②式中關(guān)于的對(duì)稱性,不妨設(shè).則

(?)、當(dāng),則,所以,因?yàn)?,

,此時(shí).

 (?)、當(dāng) …③,由①得 ,,,

因?yàn)?nbsp;  所以   … ④

 同理得 …  ⑤ ,于是   … ⑥

今證明   …  ⑦, 因?yàn)? ,

只要證  ,即 ,也即 ,據(jù)③,此為顯然.

 因此⑦得證.故由⑥得 .

綜上所述,對(duì)任何正數(shù),皆有.

 

 


同步練習(xí)冊(cè)答案