3.本卷共10小題.共90分. (注意:在試題卷上作答無效) 查看更多

 

題目列表(包括答案和解析)

必須用黑色字跡鋼筆或簽字筆作答,答案必須寫在答題卷各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答的答案無效。

第Ⅰ卷   選擇題(共50分)

一、選擇題(本大題共10小題,每小題5分,滿分50分)

1、設(shè)全集U={是不大于9的正整數(shù)},{1,2,3 },{3,4,5,6}則圖中陰影部分所表示的集合為(  )

       A.{1,2,3,4,5,6}    B. {7,8,9}

       C.{7,8}                        D.    {1,2,4,5,6,7,8,9}

2、計(jì)算復(fù)數(shù)(1-i)2等于(  )

A.0                B.2              C. 4i                   D. -4i

查看答案和解析>>

考試結(jié)束,請將本試題卷和答題卡一并上交。

一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

1.設(shè)全集,集合,,則圖中的陰影部分表示的集合為

A.                  B.

C.                 D.

2.已知非零向量、滿足,那么向量與向量的夾角為

A.    B.    C.    D.

3.的展開式中第三項(xiàng)的系數(shù)是

       A.               B.               C.15              D.

4.圓與直線相切于點(diǎn),則直線的方程為

A.   B.   C.  D.

查看答案和解析>>

某學(xué)生買了一本數(shù)學(xué)練習(xí)《小題狂做》,每次練習(xí)中有8道選擇題,每道選擇題有4個(gè)選項(xiàng),其中有且僅有一個(gè)選項(xiàng)正確.評分標(biāo)準(zhǔn)是“每題僅選一個(gè)選項(xiàng),選對得5分,不選或選錯(cuò)得零分”.假設(shè)該生確定能做對前5題,第6-7題每題答對可能性均為p,第8題完全不能理解題意,只能隨意猜測,若該生做完了8道題得分不少于35分的概率是
59

(1)求p的值;
(2)該生要想每次選擇題的平均得分不少于35,是否還應(yīng)繼續(xù)努力以提高正確率?

查看答案和解析>>

某學(xué)生買了一本數(shù)學(xué)練習(xí)《小題狂做》,每次練習(xí)中有8道選擇題,每道選擇題有4個(gè)選項(xiàng),其中有且僅有一個(gè)選項(xiàng)正確.評分標(biāo)準(zhǔn)是“每題僅選一個(gè)選項(xiàng),選對得5分,不選或選錯(cuò)得零分”.假設(shè)該生確定能做對前5題,第6-7題每題答對可能性均為p,第8題完全不能理解題意,只能隨意猜測,若該生做完了8道題得分不少于35分的概率是
(1)求p的值;
(2)該生要想每次選擇題的平均得分不少于35,是否還應(yīng)繼續(xù)努力以提高正確率?

查看答案和解析>>

某學(xué)生買了一本數(shù)學(xué)練習(xí)《小題狂做》,每次練習(xí)中有8道選擇題,每道選擇題有4個(gè)選項(xiàng),其中有且僅有一個(gè)選項(xiàng)正確.評分標(biāo)準(zhǔn)是“每題僅選一個(gè)選項(xiàng),選對得5分,不選或選錯(cuò)得零分”.假設(shè)該生確定能做對前5題,第6-7題每題答對可能性均為p,第8題完全不能理解題意,只能隨意猜測,若該生做完了8道題得分不少于35分的概率是
(1)求p的值;
(2)該生要想每次選擇題的平均得分不少于35,是否還應(yīng)繼續(xù)努力以提高正確率?

查看答案和解析>>

 

1. C.      由

2. A.     根據(jù)汽車加速行駛,勻速行駛,減速行駛結(jié)合函數(shù)圖像可知;

3. A.       由,,;

4. D.              ;

5. C.      由;

6. B.              由;

7.D.        由;

8.A.        只需將函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像.

9.D.由奇函數(shù)可知,而,則,當(dāng)時(shí),;當(dāng)時(shí),,又在上為增函數(shù),則奇函數(shù)在上為增函數(shù),.

10.D.由題意知直線與圓有交點(diǎn),則.

另解:設(shè)向量,由題意知

由可得

11.C.由題意知三棱錐為正四面體,設(shè)棱長為,則,棱柱的高(即點(diǎn)到底面的距離),故與底面所成角的正弦值為.

另解:設(shè)為空間向量的一組基底,的兩兩間的夾角為

長度均為,平面的法向量為,

則與底面所成角的正弦值為.

12.B.分三類:種兩種花有種種法;種三種花有種種法;種四種花有種種法.共有.

13.答案:9.如圖,作出可行域,

作出直線,將平移至過點(diǎn)處

時(shí),函數(shù)有最大值9.

14. 答案:2.由拋物線的焦點(diǎn)坐標(biāo)為

為坐標(biāo)原點(diǎn)得,,則

與坐標(biāo)軸的交點(diǎn)為,則以這三點(diǎn)圍成的三角形的面積為

15.答案:.設(shè),則

16.答案:.設(shè),作

,則,為二面角的平面角

,結(jié)合等邊三角形

與正方形可知此四棱錐為正四棱錐,則

,

故所成角的余弦值

 

則點(diǎn),

,

則,

故所成角的余弦值.

17.解析:(Ⅰ)在中,由正弦定理及

可得

即,則;

(Ⅱ)由得

當(dāng)且僅當(dāng)時(shí),等號成立,

18.解:(1)取中點(diǎn),連接交于點(diǎn),

,,

又面面,面,

,

,,即,

面,.

(2)在面內(nèi)過點(diǎn)作的垂線,垂足為.

,,面,,

則即為所求二面角的平面角.

,,,

,則,

,即二面角的大。

19. 解:(1)求導(dǎo):

當(dāng)時(shí),,,在上遞增

當(dāng),求得兩根為

即在遞增,遞減,

遞增

(2),且解得:

 20.解:(Ⅰ)解:設(shè)、分別表示依方案甲需化驗(yàn)1次、2次。

   、表示依方案乙需化驗(yàn)2次、3次;

   表示依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)。

  依題意知與獨(dú)立,且

(Ⅱ)的可能取值為2,3。

;

∴(次)

 

21. 解:(Ⅰ)設(shè),,

由勾股定理可得:

得:,,

由倍角公式,解得,則離心率.

(Ⅱ)過直線方程為,與雙曲線方程聯(lián)立

將,代入,化簡有

將數(shù)值代入,有,解得

故所求的雙曲線方程為。

22. 解析:

(Ⅰ)證明:,

故函數(shù)在區(qū)間(0,1)上是增函數(shù);

(Ⅱ)證明:(用數(shù)學(xué)歸納法)(i)當(dāng)n=1時(shí),,,

由函數(shù)在區(qū)間是增函數(shù),且函數(shù)在處連續(xù),則在區(qū)間是增函數(shù),,即成立;

(?)假設(shè)當(dāng)時(shí),成立,即

那么當(dāng)時(shí),由在區(qū)間是增函數(shù),得

.而,則,

,也就是說當(dāng)時(shí),也成立;

根據(jù)(?)、(?)可得對任意的正整數(shù),恒成立.

 (Ⅲ)證明:由.可得

1, 若存在某滿足,則由⑵知:

2, 若對任意都有,則

,即成立.

 

 

 

 

 

 


同步練習(xí)冊答案