題目列表(包括答案和解析)
()如圖,在五面體ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M為EC的中點,AF=AB=BC=FE=AD
(I) 求異面直線BF與DE所成的角的大小;
(II) 證明平面AMD平面CDE;
(III)求二面角A-CD-E的余弦值。
平面圖形如圖4所示,其中是矩形,,,,F將該平面圖形分別沿和折疊,使與所在平面都與平面垂直,再分別連接,得到如圖2所示的空間圖形,對此空間圖形解答下列問題。
。
(Ⅰ)證明:; (Ⅱ)求的長;
(Ⅲ)求二面角的余弦值。
平面圖形如圖4所示,其中是矩形,,,
。現將該平面圖形分別沿和折疊,使與所在平面都
與平面垂直,再分別連接,得到如圖2所示的空間圖形,對此空間圖形解答
下列問題。
。
(Ⅰ)證明:; (Ⅱ)求的長;
(Ⅲ)求二面角的余弦值。
數學(文)
第I卷(共60分)
一、選擇題(每小題5分,共60分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
D
B
A
A
D
A
C
B
A
A
第Ⅱ卷(共90分)
二、填空題(每小題4分,共16分)
13. 14.3 15.97 16.③
三、解答題(共74分)
17.(本小題滿分12分)
(I)的內角和。
,
(Ⅱ)
當即時,取最大值
18.(本題滿分12分)
記A:該夫婦生一個小孩是患病男孩,B:該夫婦生一個小孩是患病女孩:C:該夫婦生一個小孩是不患病男孩;D:該夫婦生一個小孩是不患病女孩,則
(I)
(Ⅱ)該夫婦所生的前兩個是患病男孩,后一個患病女孩的概率為,所以
19.(本題滿分12分)
解法一:(I)證明:連接,設,連接DE
三棱柱是正三棱柱,且,
四邊形是正方形,
∴E是的中點,又是的中點,
∴
∵平面平面,
∴平面
(Ⅱ)解:在平面內作于點,在面;內作于連接。
∵平面平面,∴平面,
∵是在平面上的射影,
∴是二面角的平面角
設在正中,
在中,在中,
從而
所以,二面角的平面角的余弦值為
解法二:建立空間直角坐標系,如圖,
(I)證明:連接設,連接,設
則
平面平面平面
(Ⅱ)解:∵
設是平面的法向量,則,且
故,取,得;
同理,可求得平面的法向量是
設二面角的大小為,則
所以,二面角的平面角的余弦值為
20.(本題滿分12分)
(I),依題意,,即
解得
令,得或列表可得:
1
+
0
―
0
+
遞增
極大
遞減
極小
遞增
所以,是極大值;是極小值
(Ⅱ)曲線方程為點不在曲線上,
設切點為,則點的坐標滿足
因,故切線的方程為
注意到點在切線上,有
化簡得,解得
21.(本題滿分12分)
(I)將代入得,整理得
由得,故
(Ⅱ)當兩條切線的斜率都存在而且不等于時,設其中一條的斜率為k,
則另外一條的斜率為
于是由上述結論可知橢圓斜率為k的切線方程為
①
又橢圓斜率為的切線方程為
②
由①得
由②得
兩式相加得
于是,所求P點坐標滿足因此,
當一條切線的斜率不存在時,另一條切線的斜率必為0,此時顯然也有
所以為定值。
22.(本題滿分14分)
(I)由知
當時,,化簡得
①
以代替得
②
兩式相減得
則,其中
所以,數列為等差數列
(Ⅱ)由,結合(I)的結論知
于是,
所以,原不等式成立
其他解法參照以上評分標準評分
本資料由《七彩教育網》www.7caiedu.cn 提供!
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com