題目列表(包括答案和解析)
已知,函數(shù)
(1)當時,求函數(shù)在點(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。
【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時, 又 所以函數(shù)在點(1,)的切線方程為;(2)中令 有
對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時, 又
∴ 函數(shù)在點(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當即時
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當即時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。
綜上所述 時,極大值為,無極小值
時 極大值是,極小值是 ----------8分
(Ⅲ)設,
對求導,得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實數(shù)的取值范圍是(,)
已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.
【解析】第一問利用設橢圓的方程為,由題意得
解得
第二問若存在直線滿足條件的方程為,代入橢圓的方程得
.
因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,
所以
所以.解得。
解:⑴設橢圓的方程為,由題意得
解得,故橢圓的方程為.……………………4分
⑵若存在直線滿足條件的方程為,代入橢圓的方程得
.
因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,
所以
所以.
又,
因為,即,
所以.
即.
所以,解得.
因為A,B為不同的兩點,所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
在中,滿足,是邊上的一點.
(Ⅰ)若,求向量與向量夾角的正弦值;
(Ⅱ)若,=m (m為正常數(shù)) 且是邊上的三等分點.,求值;
(Ⅲ)若且求的最小值。
【解析】第一問中,利用向量的數(shù)量積設向量與向量的夾角為,則
令=,得,又,則為所求
第二問因為,=m所以,
(1)當時,則=
(2)當時,則=
第三問中,解:設,因為,;
所以即于是得
從而
運用三角函數(shù)求解。
(Ⅰ)解:設向量與向量的夾角為,則
令=,得,又,則為所求……………2分
(Ⅱ)解:因為,=m所以,
(1)當時,則=;-2分
(2)當時,則=;--2分
(Ⅲ)解:設,因為,;
所以即于是得
從而---2分
==
=…………………………………2分
令,則,則函數(shù),在遞減,在上遞增,所以從而當時,
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.
(1)求數(shù)列的通項公式和數(shù)列的前n項和;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
第三問,
若成等比數(shù)列,則,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
.
(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
綜合①、②可得的取值范圍是.
(3),
若成等比數(shù)列,則,
即.
由,可得,即,
.
又,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列
如圖,,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).
(1)寫出、和之間的等量關系,以及、和之間的等量關系;
(2)求證:();
(3)設,對所有,恒成立,求實數(shù)的取值范圍.
【解析】第一問利用有,得到
第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及,
得
第三問
.………………………2分
因為函數(shù)在區(qū)間上單調(diào)遞增,所以當時,最大為,即
解:(1)依題意,有,,………………4分
(2)證明:①當時,可求得,命題成立; ……………2分
②假設當時,命題成立,即有,……………………1分
則當時,由歸納假設及,
得.
即
解得(不合題意,舍去)
即當時,命題成立. …………………………………………4分
綜上所述,對所有,. ……………………………1分
(3)
.………………………2分
因為函數(shù)在區(qū)間上單調(diào)遞增,所以當時,最大為,即
.……………2分
由題意,有. 所以,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com