當且僅當時取等號.所以.即.∴的最大值為-48----------------------------------12分 查看更多

 

題目列表(包括答案和解析)

已知數列是各項均不為0的等差數列,公差為d,為其前n項和,且滿足,.數列滿足,,為數列的前n項和.

(1)求數列的通項公式和數列的前n項和;

(2)若對任意的,不等式恒成立,求實數的取值范圍;

(3)是否存在正整數,使得成等比數列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

第二問,①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問

     若成等比數列,則,

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

(2)①當n為偶數時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數列,則,

即.

,可得,即,

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數列中的成等比數列

 

查看答案和解析>>

已知函數,

(1)求函數的定義域;

(2)求函數在區(qū)間上的最小值;

(3)已知,命題p:關于x的不等式對函數的定義域上的任意恒成立;命題q:指數函數是增函數.若“p或q”為真,“p且q”為假,求實數m的取值范圍.

【解析】第一問中,利用由 即

第二問中,,得:

,

第三問中,由在函數的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數函數.因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。

解:(1)由 即

(2)得:

,

(3)由在函數的定義域上 的任意,,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數函數.因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時,

當命題p為假,命題q為真時,

所以

 

查看答案和解析>>

已知函數;

(1)若函數在其定義域內為單調遞增函數,求實數的取值范圍。

(2)若函數,若在[1,e]上至少存在一個x的值使成立,求實數的取值范圍。

【解析】第一問中,利用導數,因為在其定義域內的單調遞增函數,所以 內滿足恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉換為不等式有解來解答即可。

解:(1)

因為在其定義域內的單調遞增函數,

所以 內滿足恒成立,即恒成立,

亦即,

即可  又

當且僅當,即x=1時取等號,

在其定義域內為單調增函數的實數k的取值范圍是.

(2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設

 上的增函數,依題意需

實數k的取值范圍是

 

查看答案和解析>>


同步練習冊答案