題目列表(包括答案和解析)
已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.
【解析】第一問當時,,則。
依題意得:,即 解得
第二問當時,,令得,結(jié)合導數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
(Ⅰ)當時,,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當時,,令得
當變化時,的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
又,,!在上的最大值為2.
②當時, .當時, ,最大值為0;
當時, 在上單調(diào)遞增!在最大值為。
綜上,當時,即時,在區(qū)間上的最大值為2;
當時,即時,在區(qū)間上的最大值為。
(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.
若,則代入(*)式得:
即,而此方程無解,因此。此時,
代入(*)式得: 即 (**)
令 ,則
∴在上單調(diào)遞增, ∵ ∴,∴的取值范圍是。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上
設(shè)定義在R的函數(shù),R. 當時,取得極大值,且函數(shù)的圖象關(guān)于點對稱.
(I)求函數(shù)的表達式;
(II)判斷函數(shù)的圖象上是否存在兩點,使得以這兩點為切點的切線互相垂直,且切點的橫坐標在區(qū)間上,并說明理由;
(III)設(shè),(),求證:.
一、選擇題(本大題共有8個小題,每小題5分,共40分;在每個小題給出的四個選項中有且僅有一個符合題目要求的)
題號
1
2
3
4
5
6
7
8
答案
B
D
C
C
B
A
C
B
二、填空題(本大題共有6個小題,每小題5分,共30分;請把答案填在相應的位置)
題號
9
10
11
12
13
14
答案
-1+
8,70
24
①③④
三、解答題(本大題共6個小題,共80分;解答應寫出文字說明,證明過程或演算步驟)
15.(本題滿分13分)
解:(1)
(2)由題意,得
16.(本題滿分13分)
解:(1)這3封信分別被投進3個信箱的概率為
(2)恰有2個信箱沒有信的概率為
(3)設(shè)信箱中的信箱數(shù)為
0
1
2
3
17.(本題滿分13分)
解:解答一:(1)在菱形中,連接則是等邊三角形。
(2)
(3)取中點,連結(jié)
解法二:(1)同解法一;
(2)過點作平行線交于,以點為坐標原點,建立如圖的坐標系
二面角的大小為
(3)由已知,可得點
即異面直線所成角的余弦值為
18.(本題滿分13分)
解:(1)將函數(shù)的圖象向右平移一個單位,得到函數(shù)的圖象,
函數(shù)的圖象關(guān)于點(0,0)對稱,即函數(shù)是奇函數(shù),
由題意得:
所以
(2)由(1)可得
故設(shè)所求兩點為
滿足條件的兩點的坐標為:
(3)
19.(本題滿分14分)
解:(1)橢圓的右焦點的坐標為(1,0),
(2)
(3)由(2)知
20.(本題滿分14分)
解:(1)
(2)由(1)知
(3)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com